Do you want to publish a course? Click here

Flavour-violating decays of mixed top-charm squarks at the LHC

82   0   0.0 ( 0 )
 Added by Bj\\\"orn Herrmann
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

We explore signatures related to squark decays in the framework of non-minimally flavour-violating Supersymmetry. We consider a simplified model where the lightest squark consists of an admixture of charm and top flavour. By recasting the existing LHC searches for top and charm squarks, we show that the limits on squark masses from these analyses are significantly weakened when the top-charm mixing is sizeable. We propose a dedicated search for squarks based on the $tc+{E_{mathrm{T}}^{mathrm{miss}}}$ final state which enhances the experimental sensitivity for the case of high mixing, and we map its expected reach for the forthcoming runs of the LHC. We emphasize the role of analyses requiring a jet tagged as produced by the fragmentation of a charm quark in understanding the squark mixing pattern, thus providing a novel handle on new physics. Our results show that, in order to achieve full coverage of the parameter space of supersymmetric models, it is necessary to extend current experimental search programmes with analyses specifically targeting the cases where the lightest top-partner is a mixed state.



rate research

Read More

258 - H. Eberl , A. Bartl , B. Herrmann 2011
We study the effect of squark generation mixing on squark production and decays at the LHC in the Minimal Supersymmetric Standard Model (MSSM). We show that the effect can be very large despite the very strong constraints on quark flavour violation (QFV) from experimental data on B mesons. We find that the two lightest up-type squarks ${tilde u}_{1,2}$ can have large branching ratios for the decays into $c {tildechi_1^0}$ and $t {tildechi_1^0}$ at the same time, leading to QFV signals $p p to c bar t, (t bar c)$ + missing-$E_T$ + $X$ with a significant rate. The observation of this remarkable signature would provide a powerful test of supersymmetric QFV at LHC. This could have a significant impact on the search for squarks and the determination of the underlying MSSM parameters.
131 - K. Hidaka 2013
Quark flavour conserving (QFC) fermionic squark decays, such as ~t_{1,2} -> t neutralino_i, are usually assumed in squark search analyses. Here we study quark flavour violating (QFV) bosonic squark decays, such as ~u_2 -> ~u_1 h^0/Z^0, where the mass eigenstates ~u_{1,2} are mixtures of scharm and stop quarks. We show that the branching ratios of such QFV decays can be very large due to sizable ~c_R - ~t_{R/L} and ~t_R - ~t_L mixing effects despite the very strong constraints on the QFV parameters from B meson data. This can result in remarkable QFV signatures with significant rates at LHC (14 TeV), such as pp -> gluino gluino X -> t c bar{c} bar{c} h^0/Z^0 missing-E_T X and pp -> gluino gluino X -> t t bar{c} bar{c} h^0/Z^0 missing-E_T X. The QFV bosonic squark decays can play an important role in the squark and gluino searches at LHC (14 TeV).
148 - K. Hidaka 2012
We study the effects of squark generation mixing on squark and gluino production and decays at LHC in the Minimal Supersymmetric Standard Model (MSSM) with focus on the mixing between second and third generation squarks. Taking into account the constraints from B-physics experiments we show that various regions in parameter space exist where decays of squarks and/or gluinos into quark flavour violating (QFV) final states can have large branching ratios. Here we consider both fermionic and bosonic decays of squarks. Rates of the corresponding QFV signals, e.g. pp -> t t bar{c} bar{c} missing-E_T X, can be significant at LHC(14 TeV). We find that the inclusion of flavour mixing effects can be important for the search of squarks and gluinos and the determination of the underlying model parameters of the MSSM at LHC.
63 - E. Ginina , H. Eberl , A. Bartl 2016
We calculate the decay width of $h^0 to b bar{b}$ in the Minimal Supersymmetric Standard Model (MSSM) with quark-flavour violation (QFV) at full one-loop level. The effect of $tilde{c}-tilde{t}$ mixing and $tilde{s}-tilde{b}$ mixing is studied taking into account the constraints from the B-meson data. We discuss and compare in detail the decays $h^0 to c bar{c}$ and $h^0 to b bar{b}$ within the framework of the perturbative mass insertion technique using the Flavour Expansion Theorem. The deviation of both decay widths from the Standard Model results can be quite large. While in $h^0 to c bar{c}$ it is almost entirely due to the flavour violating part of the MSSM, in $h^0 to b bar{b}$ it is mainly due to the flavour conserving part. Nevertheless, $Gamma(h^0 to b bar{b})$ can fluctuate up to $sim 7%$ due to QFV chargino exchange with large $tilde{c}-tilde{t}$ mixing. due to QFV chargino exchange with large $tilde{c}-tilde{t}$ mixing.
We investigate the prospects of discovering the top quark decay into a charm quark and a Higgs boson ($t to c h^0$) in top quark pair production at the CERN Large Hadron Collider (LHC). A general two Higgs doublet model is adopted to study flavor changing neutral Higgs (FCNH) interactions. We perform a parton level analysis as well as Monte Carlo simulations using textsc{Pythia}~8 and textsc{Delphes} to study the flavor changing top quark decay $t to c h^0$, followed by the Higgs decaying into $tau^+ tau^-$, with the other top quark decaying to a bottom quark ($b$) and two light jets ($tto bWto bjj$). To reduce the physics background to the Higgs signal, only the leptonic decays of tau leptons are used, $tau^+tau^- to e^pmmu^mp +slashed{E}_T$, where $slashed{E}_T$ represents the missing transverse energy from the neutrinos. In order to reconstruct the Higgs boson and top quark masses as well as to effectively remove the physics background, the collinear approximation for the highly boosted tau decays is employed. Our analysis suggests that a high energy LHC at $sqrt{s} = 27$ TeV will be able to discover this FCNH signal with an integrated luminosity $mathcal{L} = 3$ ab$^{-1}$ for a branching fraction ${cal B}(t to ch^0) agt 1.4 times 10^{-4}$ that corresponds to a FCNH coupling $|lambda_{tch}| agt 0.023$. This FCNH coupling is significantly below the current ATLAS combined upper limit of $|lambda_{tch}| = 0.064$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا