Do you want to publish a course? Click here

Mesoscopic supercurrent fluctuations in diffusive magnetic Josephson junctions

102   0   0.0 ( 0 )
 Added by Pavel Ioselevich
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the supercurrent in quasi-one-dimensional Josephson junctions with a weak link involving magnetism, either via magnetic impurities or via ferromagnetism. In the case of weak links longer than {color{black}the magnetic pair-breaking} length, the Josephson effect is dominated by mesoscopic fluctuations. We establish the supercurrent-phase dependence $I(varphi)$ along with statistics of its sample-dependent properties in junctions with transparent contacts between leads and link. High transparency gives rise to the inverse proximity effect, while the direct proximity effect is suppressed by magnetism in the link. We find that all harmonics are present in $I(varphi)$. Each harmonic has its own sample-dependent amplitude and phase shift with no correlation between different harmonics. Depending on the type of magnetic weak link, the system can realize a $varphi_0$ or $varphi$ junction in the fluctuational regime. Full supercurrent statistics is obtained at arbitrary relation between temperature, superconducting gap, and the Thouless energy of the weak link.



rate research

Read More

187 - M. Houzet , M. A. Skvortsov 2007
We study mesoscopic fluctuations and weak localization correction to the supercurrent in Josephson junctions with coherent diffusive electron dynamics in the normal part. Two kinds of junctions are considered: a chaotic dot coupled to superconductors by tunnel barriers and a diffusive junction with transparent normal--superconducting interfaces. The amplitude of current fluctuations and the weak localization correction to the average current are calculated as functions of the ratio between the superconducting gap and the electron dwell energy, temperature, and superconducting phase difference across the junction. Technically, fluctuations on top of the spatially inhomogeneous proximity effect in the normal region are described by the replicated version of the sigma-model. For the case of diffusive junctions with transparent interfaces, the magnitude of mesoscopic fluctuations of the critical current appears to be nearly 3 times larger than the prediction of the previous theory which did not take the proximity effect into account.
We investigate the transport properties of magnetic Josephson junctions. In order to capture realistic material band structure effects, we develop a numerical method combining density functional theory and Bogoliubov-de Gennes model. We demonstrate the capabilities of this method by studying Nb/Ni/Nb junctions in the clean limit. The supercurrent through the junctions is calculated as a function of the ferromagnetic Ni thickness, magnetization, and crystal orientation. We identify two generic mechanisms for the supercurrent decay with ferromagnet thickness: (i) large exchange splitting may gap out minority or majority carriers leading to the suppression of Andreev reflection in the junction, (ii) loss of synchronization between different modes due to the significant dispersion of the quasiparticle velocity with the transverse momentum. Our results are in good agreement with recent experimental studies of Nb/Ni/Nb junctions. The present approach opens a path for material composition optimization in magnetic Josephson junctions and superconducting magnetic spin valves.
Semiconductor-superconductor hybrid systems provide a promising platform for hosting unpaired Majorana fermions towards the realisation of fault-tolerant topological quantum computing. In this study, we employ the Keldysh Non-Equilibrium Greens function formalism to model quantum transport in normal-superconductor junctions. We analyze III-V semiconductor nanowire Josephson junctions (InAs/Nb) using a three-dimensional discrete lattice model described by the Bogolubov-de Gennes Hamiltonian in the tight-binding approximation, and compute the Andreev bound state spectrum and current-phase relations. Recent experiments [Zuo et al., Phys. Rev. Lett. 119,187704 (2017)] and [Gharavi et al., arXiv:1405.7455v2 (2014)] reveal critical current oscillations in these devices, and our simulations confirm these to be an interference effect of the transverse sub-bands in the nanowire. We add disorder to model coherent scattering and study its effect on the critical current oscillations, with an aim to gain a thorough understanding of the experiments. The oscillations in the disordered junction are highly sensitive to the particular realisation of the random disorder potential, and to the gate voltage. A macroscopic current measurement thus gives us information about the microscopic profile of the junction. Finally, we study dephasing in the channel by including elastic phase-breaking interactions. The oscillations thus obtained are in good qualitative agreement with the experimental data, and this signifies the essential role of phase-breaking processes in III-V semiconductor nanowire Josephson junctions.
We experimentally studied the Josephson supercurrent in Nb/InN-nanowire/Nb junctions. Large critical currents up to 5.7 $mu$A have been achieved, which proves the good coupling of the nanowire to the superconductor. The effect of a magnetic field perpendicular to the plane of the Josephson junction on the critical current has been studied. The observed monotonous decrease of the critical current with magnetic field is explained by the magnetic pair-breaking effect in planar Josephson junctions of ultra-narrow width [J. C. Cuevas and F. S. Bergeret, Phys. Rev. Lett. 99, 217002 (2007)]
We report on the fabrication and measurements of planar mesoscopic Josephson junctions formed by InAs nanowires coupled to superconducting Nb terminals. The use of Si-doped InAs-nanowires with different bulk carrier concentrations allowed to tune the properties of the junctions. We have studied the junction characteristics as a function of temperature, gate voltage, and magnetic field. In junctions with high doping concentrations in the nanowire Josephson supercurrent values up to 100,nA are found. Owing to the use of Nb as superconductor the Josephson coupling persists at temperatures up to 4K. In all junctions the critical current monotonously decreased with the magnetic field, which can be explained by a recently developed theoretical model for the proximity effect in ultra-small Josephson junctions. For the low-doped Josephson junctions a control of the critical current by varying the gate voltage has been demonstrated. We have studied conductance fluctuations in nanowires coupled to superconducting and normal metal terminals. The conductance fluctuation amplitude is found to be about 6 times larger in superconducting contacted nanowires. The enhancement of the conductance fluctuations is attributed to phase-coherent Andreev reflection as well as to the large number of phase-coherent channels due to the large superconducting gap of the Nb electrodes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا