No Arabic abstract
We present a detailed census of galaxies in and around PC217.96+32.3, a spectroscopically confirmed Coma analog at z=3.78. Diverse galaxy types identified in the field include Lya emitters (LAEs), massive star-forming galaxies, and ultra-massive galaxies (log (Mstar/Msun)>= 11) which may have already halted their star formation. The sky distribution of the star-forming galaxies suggests the presence of a significant overdensity (delta_g=8+/-2), which is spatially offset from the previously confirmed members by 3-4 Mpc to the west. Candidate quiescent and post-starburst galaxies are also found in large excess (a factor of ~ 8-15 higher surface density than the field) although their redshifts are less certain. We estimate that the total enclosed mass traced by star-forming galaxy candidates is roughly comparable to that of PC217.96+32.3 traced by the LAEs. We speculate that the true extent of PC217.96+32.3 may be larger than previously known, a half of which is missed by our LAE selection. Alternatively, the newly discovered overdensity may belong to another Coma progenitor not associated with PC217.96+32.3. Expectations from theory suggest that both scenarios are equally unlikely (<1%), particularly in the cosmic volume probed in our survey. If confirmed as a single structure, its total mass will be well in excess of Coma, making this a singularly large cosmic structure rarely seen even in large cosmological simulations. Finally, we find that the protocluster galaxies follow the same SFR-M_star scaling relation as the field galaxies, suggesting that the environmental effect at z~4 is a subtle one at best for normal star-forming galaxies.
We report the spectroscopic confirmation of a new protocluster in the COSMOS field at $z$ $sim$ 2.2, COSMOS Cluster 2.2 (CC2.2), originally identified as an overdensity of narrowband selected H$alpha$ emitting candidates. With only two masks of Keck/MOSFIRE near-IR spectroscopy in both $H$ ($sim$ 1.47-1.81 $mu$m) and $K$ ($sim$ 1.92-2.40 $mu$m) bands ($sim$ 1.5 hour each), we confirm 35 unique protocluster members with at least two emission lines detected with S/N $>$ 3. Combined with 12 extra members from the zCOSMOS-deep spectroscopic survey (47 in total), we estimate a mean redshift and a line-of-sight velocity dispersion of $z_{mean}$=2.23224 $pm$ 0.00101 and $sigma_{los}$=645 $pm$ 69 km s$^{-1}$ for this protocluster, respectively. Assuming virialization and spherical symmetry for the system, we estimate a total mass of $M_{vir}$ $sim$ $(1-2) times$10$^{14}$ $M_{odot}$ for the structure. We evaluate a number density enhancement of $delta_{g}$ $sim$ 7 for this system and we argue that the structure is likely not fully virialized at $z$ $sim$ 2.2. However, in a spherical collapse model, $delta_{g}$ is expected to grow to a linear matter enhancement of $sim$ 1.9 by $z$=0, exceeding the collapse threshold of 1.69, and leading to a fully collapsed and virialized Coma-type structure with a total mass of $M_{dyn}$($z$=0) $sim$ 9.2$times$10$^{14}$ $M_{odot}$ by now. This observationally efficient confirmation suggests that large narrowband emission-line galaxy surveys, when combined with ancillary photometric data, can be used to effectively trace the large-scale structure and protoclusters at a time when they are mostly dominated by star-forming galaxies.
We have observed the dust continuum of ten z=3.1 Lyman Break Galaxies with the Atacama Large Millimeter/Submillimeter Array at ~450 mas resolution in Band 7. We detect and resolve the 870um emission in one of the targets with an integrated flux density of S(870)=(192+/-57) uJy, and measure a stacked 3-sigma signal of S(870)=(67+/-23) uJy for the remaining nine. The total infrared luminosities estimated from full spectral energy distribution fits are L(8-1000um)=(8.4+/-2.3)x10^10 Lsun for the detection and L(8-1000um)=(2.9+/-0.9)x10^10 Lsun for the stack. With HST ACS I-band imaging we map the rest-frame UV emission on the same scale as the dust, effectively resolving the infrared excess (IRX=L_FIR/L_UV) in a normal galaxy at z=3. Integrated over the galaxy we measure IRX=0.56+/-0.15, and the galaxy-averaged UV slope is beta=-1.25+/-0.03. This puts the galaxy a factor of ~10 below the IRX-beta relation for local starburst nuclei of Meurer et al. (1999). However, IRX varies by more than a factor of 3 across the galaxy, and we conclude that the complex relative morphology of the dust relative to UV emission is largely responsible for the scatter in the IRX-beta relation at high-z. A naive application of a Meurer-like dust correction based on the UV slope would dramatically over-estimate the total star formation rate, and our results support growing evidence that when integrated over the galaxy, the typical conditions in high-z star-forming galaxies are not analogous to those in the local starburst nuclei used to establish the Meurer relation.
The protocluster core SPT2349$-$56 at $z,{=},4.3$ is one of the most actively star-forming regions known, yet constraints on the total stellar mass of this system are highly uncertain. We have therefore carried out deep optical and infrared observations of this system, probing rest-frame ultraviolet to infrared wavelengths. Using the positions of the spectroscopically-confirmed protocluster members, we identify counterparts and perform detailed source deblending, allowing us to fit spectral energy distributions in order to estimate stellar masses. We show that the galaxies in SPT2349$-$56 have stellar masses proportional to their high star-formation rates, consistent with other protocluster galaxies and field submillimetre galaxies (SMGs) around redshift 4. The galaxies in SPT2349$-$56 have on average lower molecular gas-to-stellar mass fractions and depletion timescales than field SMGs, although with considerable scatter. We construct the stellar-mass function for SPT2349$-$56 and compare it to the stellar-mass function of $z,{=},1$ galaxy clusters, finding both to be best described by a Schechter function. We measure rest-frame ultraviolet half-light radii from our {it HST/}-F160W imaging, finding that on average the galaxies in our sample are similar in size to typical star-forming galaxies around the same redshift. However, the brightest {it HST/}-detected galaxy in our sample, found near the luminosity-weighted centre of the protocluster core, remains unresolved at this wavelength. Hydrodynamical simulations predict that the core galaxies will quickly merge into a brightest cluster galaxy, thus our observations provide a direct view of the early formation mechanisms of this class of object.
We measure the merger fraction of massive galaxies using the UltraVISTA/COSMOS $Ks$-band selected catalog, complemented with the deeper, higher resolution 3DHST+CANDELS catalog selected in the HST/WFC3 $H$-band, presenting the largest mass-complete photometric merger sample up to $zsim3$. We find that selecting mergers using the $H_{160}$-band flux ratio leads to an increasing merger fraction with redshift, while selecting mergers using the stellar mass ratio causes a diminishing redshift dependence. Defining major and minor mergers as having stellar mass ratios of 1:1 - 4:1 and 4:1 - 10:1 respectively, the results imply $sim$1 major and $lesssim$1 minor merger for an average massive (log$(M_{star}/M_{odot}) geqslant 10.8$) galaxy during $z=0.1-2.5$. There may be an additional $sim 0.5(0.3)$ major (minor) merger if we use the $H$-band flux ratio selection. The observed amount of major merging alone is sufficient to explain the observed number density evolution for the very massive (log$(M_{star}/M_{odot}) geqslant 11.1$) galaxies. We argue that these very massive galaxies can put on a maximum of $6%$ of stellar mass in addition to major and minor merging, so that their number density evolution remains consistent with observations. The observed number of major and minor mergers can increase the size of a massive quiescent galaxy by a factor of two at most. This amount of merging is enough to bring the compact quiescent galaxies formed at $z>2$ to lie at $1sigma$ below the mean of the stellar mass-size relation as measured in some works (e.g. Newman et al. 2012), but additional mechanisms are needed to fully explain the evolution, and to be consistent with works suggesting stronger evolution (e.g. van der Wel et al. 2014).
We present deep spectroscopic follow-up observations of the Bremer Deep Field (BDF) where the two $zsim$7 bright Ly$alpha$ emitters (LAE) BDF521 and BDF3299 were previously discovered by Vanzella et al. (2011) and where a factor of $sim$3-4 overdensity of faint LBGs has been found by Castellano et al. (2016). We confirm a new bright Ly$alpha$ emitter, BDF2195, at the same redshift of BDF521, $z=7.008$, and at only $sim$90 kpc physical distance from it, confirming that the BDF area is likely an overdense, reionized region. A quantitative assessment of the Ly$alpha$ fraction shows that the number of detected bright emitters is much higher than the average found at z$sim$7, suggesting a high Ly$alpha$ transmission through the inter-galactic medium (IGM). However, the line visibility from fainter galaxies is at odds with this finding, since no Ly$alpha$ emission is found in any of the observed candidates with $M_{UV}>$-20.25. This discrepancy can be understood either if some mechanism prevents Ly$alpha$ emission from fainter galaxies within the ionized bubbles from reaching the observer, or if faint galaxies are located outside the reionized area and bright LAEs are solely responsible for the creation of their own HII regions. A thorough assessment of the nature of the BDF region and of its sources of re-ionizing radiation will be made possible by JWST spectroscopic capabilities.