First generation quantum repeater networks require independent quantum memories capable of storing and retrieving indistinguishable photons to perform quantum-interference-mediated high-repetition entanglement swapping operations. The ability to perform these coherent operations at room temperature is of prime importance in order to realize large scalable quantum networks. Here we address these significant challenges by observing Hong-Ou-Mandel (HOM) interference between indistinguishable photons carrying polarization qubits retrieved from two independent room-temperature quantum memories. Our elementary quantum network configuration includes: (i) two independent sources generating polarization-encoded qubits; (ii) two atomic-vapor dual-rail quantum memories; and (iii) a HOM interference node. We obtained interference visibilities after quantum memory retrieval of $rm boldsymbol{V=(41.9pm2.0)%}$ for few-photon level inputs and $rm boldsymbol{V=(25.9pm2.5)%}$ for single-photon level inputs. Our prototype network lays the groundwork for future large-scale memory-assisted quantum cryptography and distributed quantum networks.