No Arabic abstract
Early magnetographic observations indicated that magnetic field in the solar photosphere has unresolved small-scale structure. Near-infrared and optical data with extremely high spatial resolution show that these structures have scales of few tens of kilometres, which are not resolved in the majority of solar observations. The goal of this study is to establish the effect of unresolved photospheric magnetic field structure on Stokes profiles observed with relatively low spatial resolution. Ultimately, we aim to develop methods for fast estimation of the photospheric magnetic filling factor and line-of-sight gradient of the photospheric magnetic field, which can be applied to large observational data sets. We exploit 3D MHD models of magneto-convection developed using MURAM code. Corresponding profiles of Fe I 6301.5 and 6302.5 $mathrm{AA}$ spectral lines are calculated using NICOLE radiative transfer code. The resulting I and V Stokes [x,y,$lambda$] cubes with reduced spatial resolution of 150 km are used to calculate magnetic field values as they would be obtained in observations with Hinode/SOT or SDO/HMI. Three different methods of the magnetic filling factor estimation are considered: the magnetic line ratio method, Stokes V width method and a simple statistical method. We find that the statistical method and the Stokes V width method are sufficiently reliable for fast filling factor estimations. Furthermore, we find that Stokes $Ipm V$ bisector splitting gradient can be used for fast estimation of line-of-sight gradient of the photospheric magnetic field.
This paper forms the second part of our study on how the neglect of NLTE conditions in the formation of Fe I 6301.5 A and the 6302.5 A lines influences the atmosphere obtained by inverting their profiles in LTE. The main cause of NLTE effects is the line opacity deficit due to the excess ionization of the Fe I atoms by the UV photons in the Sun. In the first paper, the above photospheric lines were assumed to have formed in 1DNLTE and the effects of horizontal radiation transfer (RT) were neglected. In the present paper, the iron lines are computed in 3DNLTE. We investigate the influence of horizontal RT on the inverted atmosphere and how it can enhance or reduce the errors due to the neglect of 1DNLTE effects. The iron lines are computed in LTE, 1DNLTE and 3DNLTE. They all are inverted using an LTE inversion code. The atmosphere from the inversion of LTE profiles is taken as the reference model. The test atmospheres from the inversion of 1DNLTE and 3DNLTE profiles are compared with it. The differences between models are analysed and correspondingly attributed to NLTE and 3D effects. The effects of horizontal RT are evident in regions surrounded by strong horizontal gradients in temperature. In some regions, the 3D effects enhance the 1DNLTE effects while in some, they weaken. The errors due to neglecting the 3D effects are less than 5% in temperature while the errors are mostly less than 20% in both velocity and magnetic field strength. These errors are found to survive spatial and spectral degradation. The neglect of horizontal RT is found to introduce errors in the derived atmosphere. How large the errors are depends on how strong the local horizontal gradients are in temperature. Compared to the 1DNLTE effect, the 3D effects are more localised to specific regions in the atmosphere and overall less dominant.
The goal of this study is to explore a novel method for the solar photospheric magnetic field diagnostics using Stokes V widths of different magnetosensitive Fe~I spectral lines. We calculate Stokes I and V profiles of several Fe I lines based on a one-dimensional photospheric model VAL C using the NICOLE radiative transfer code. These profiles are used to produce calibration curves linking the intrinsic magnetic field values with the widths of blue peaks of Stokes V profiles. The obtained calibration curves are then tested using the Stokes profiles calculated for more realistic photospheric models based on MHD models of magneto-convection. It is shown that the developed Stokes V widths (SVW) method can be used with various optical and near-infrared lines. Out of six lines considered in this study, FeI 6301 line appears to be the most effective: it is sensitive to fields over ~200G and does not show any saturation up to ~2kG. Other lines considered can also be used for the photospheric field diagnostics with this method, however, only in narrower field value ranges, typically from about 100G to 700-1000G. The developed method can be a useful alternative to the classical magnetic line ratio method, particularly when the choice of lines is limited.
We observed polarization of the SiO rotational transitions from Orion Source I (SrcI) to probe the magnetic field in bipolar outflows from this high mass protostar. Both 43 GHz $J$=1-0 and 86 GHz $J$=2-1 lines were mapped with $sim$20 AU resolution, using the Very Large Array (VLA) and Atacama Large Millimeter/Submillimeter Array (ALMA), respectively. The $^{28}$SiO transitions in the ground vibrational state are a mixture of thermal and maser emission. Comparison of the polarization position angles in the $J$=1-0 and $J$=2-1 transitions allows us to set an upper limit on possible Faraday rotation of $10^{4}$ radians m$^{-2}$, which would twist the $J$=2-1 position angles typically by less than 10 degrees. The smooth, systematic polarization structure in the outflow lobes suggests a well ordered magnetic field on scales of a few hundred AU. The uniformity of the polarization suggests a field strength of $sim$30 milli-Gauss. It is strong enough to shape the bipolar outflow and possibly lead to sub-Keplerian rotation of gas at the base of the outflow. The strikingly high fractional linear polarizations of 80-90% in the $^{28}$SiO $v$=0 masers require anisotropic pumping. We measured circular polarizations of 60% toward the strongest maser feature in the $v$=0 $J$=1-0 peak. Anisotropic resonant scattering (ARS) is likely to be responsible for this circular polarization. We also present maps of the $^{29}$SiO $v$=0 $J$=2-1 maser and several other SiO transitions at higher vibrational levels and isotopologues.
Understanding the characteristics of the solar magnetic field is essential for interpreting solar activities and dynamo. In this research, we investigated the asymmetric distribution of the solar photospheric magnetic field values, using synoptic charts constructed from space-borne high-resolution magnetograms. It is demonstrated that the Lorentzian function describes the distribution of magnetic field values in the synoptic charts much better than the Gaussian function, and this should reflect the gradual decay process from strong to weak magnetic fields. The asymmetry values are calculated under several circumstances, and the results generally show two periodicities related to the variation of the solar B$_0$ angle and the solar cycle, respectively. We argue that it is the small-scale magnetic fields, the inclination of the solar axis, the emergence and evolution of magnetic flux, and the polar fields that are responsible for the features of asymmetry values. We further determined the polar field reversal time of solar cycles 23 and 24 with the flip of asymmetry values. Specifically, for cycle 24, we assert that the polar polarities of both hemispheres reversed at the same time - in March 2014; as to cycle 23, the reversal time of the S-hemisphere is March 2001, while the determination of the N-hemisphere is hampered by missing data.
We investigate the vertical gradient of the magnetic field of sunspots in the photospheric layer. Independent observations were obtained with the SOT/SP onboard the Hinode spacecraft and with the TIP-2 mounted at the VTT. We apply state-of-the-art inversion techniques to both data sets to retrieve the magnetic field and the corresponding vertical gradient. In the sunspot penumbrae we detected patches of negative vertical gradients of the magnetic field strength, i.e.,the magnetic field strength decreases with optical depth in the photosphere. The negative gradient patches are located in the inner and partly in the middle penumbrae in both data sets. From the SOT/SP observations, we found that the negative gradient patches are restricted mainly to the deep photospheric layers and are concentrated near the edges of the penumbral filaments. MHD simulations also show negative gradients in the inner penumbrae, also at the locations of filaments. Both in the observations and simulation negative gradients of the magnetic field vs. optical depth dominate at some radial distances in the penumbra. The negative gradient with respect to optical depth in the inner penumbrae persists even after averaging in the azimuthal direction, both in the observations and, to a lesser extent, also in MHD simulations. We interpret the observed localized presence of the negative vertical gradient of the magnetic field strength in the observations as a consequence of stronger field from spines expanding with height and closing above the weaker field inter-spines. The presence of the negative gradients with respect to optical depth after azimuthal averaging can be explained by two different mechanisms: the high corrugation of equal optical depth surfaces and the cancellation of polarized signal due to the presence of unresolved opposite polarity patches in the deeper layers of the penumbra.