Do you want to publish a course? Click here

Relativistic parameterizations of neutron matter and implications for neutron stars

77   0   0.0 ( 0 )
 Added by Andreas Zacchi
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We construct parameter sets of the relativistic mean-field model fitted to the recent constraints on the asymmetry energy $J$ and the slope parameter $L$ for pure neutron matter. We find cases of unphysical behaviour, i.e. the appearance of negative pressures, for stiff parameter sets with low values of the effective mass $m^*/m$. In some cases the equation of state of pure neutron matter turns out to be outside the allowed band given by chiral effective field theory. The mass-radius relations of neutron stars for all acceptable parameter sets shows a maximum mass in excess of $2M_odot$ being compatible with pulsar mass measurements. Given the constraints on the model in the low-density regime coming from chiral effective theory, we find that the radius of a $1.4M_odot$ neutron star is nearly independent on the value of $L$. This is in contrast to some previous claims for a strong connection of the slope parameter with the radius of a neutron star. In fact, the mass-radius relation turns out to depend only on the isoscalar parameters of symmetric matter. The constraints of GW170817 on the tidal deformability and on the radius are also discussed.



rate research

Read More

A phase of strong interacting matter with deconfined quarks is expected in the core of massive neutron stars. We investigate the quark deconfinement phase transition in cold (T = 0) and hot beta-stable hadronic matter. Assuming a first order phase transition, we calculate and compare the nucleation rate and the nucleation time due to quantum and thermal nucleation mechanisms. We show that above a threshold value of the central pressure a pure hadronic star (HS) (i.e. a compact star with no fraction of deconfined quark matter) is metastable to the conversion to a quark star (QS) (i.e. a hybrid star or a strange star). This process liberates an enormous amount of energy, of the order of 10^{53}~erg, which causes a powerful neutrino burst, likely accompanied by intense gravitational waves emission, and possibly by a second delayed (with respect to the supernova explosion forming the HS) explosion which could be the energy source of a powerful gamma-ray burst (GRB). This stellar conversion process populates the QS branch of compact stars, thus one has in the Universe two coexisting families of compact stars: pure hadronic stars and quark stars. We introduce the concept of critical mass M_{cr} for cold HSs and proto-hadronic stars (PHSs), and the concept of limiting conversion temperature for PHSs. We show that PHSs with a mass M < M_{cr} could survive the early stages of their evolution without decaying to QSs. Finally, we discuss the possible evolutionary paths of proto-hadronic stars.
Neutron stars are not only of astrophysical interest, but are also of great interest to nuclear physicists, because their attributes can be used to determine the properties of the dense matter in their cores. One of the most informative approaches for determining the equation of state of this dense matter is to measure both a stars equatorial circumferential radius $R_e$ and its gravitational mass $M$. Here we report estimates of the mass and radius of the isolated 205.53 Hz millisecond pulsar PSR J0030+0451 obtained using a Bayesian inference approach to analyze its energy-dependent thermal X-ray waveform, which was observed using the Neutron Star Interior Composition Explorer (NICER). This approach is thought to be less subject to systematic errors than other approaches for estimating neutron star radii. We explored a variety of emission patterns on the stellar surface. Our best-fit model has three oval, uniform-temperature emitting spots and provides an excellent description of the pulse waveform observed using NICER. The radius and mass estimates given by this model are $R_e = 13.02^{+1.24}_{-1.06}$ km and $M = 1.44^{+0.15}_{-0.14} M_odot$ (68%). The independent analysis reported in the companion paper by Riley et al. (2019) explores different emitting spot models, but finds spot shapes and locations and estimates of $R_e$ and $M$ that are consistent with those found in this work. We show that our measurements of $R_e$ and $M$ for PSR J0030$+$0451 improve the astrophysical constraints on the equation of state of cold, catalyzed matter above nuclear saturation density.
321 - Dany Page 2012
In this review, I present a brief summary of the impact of nucleon pairing at supra-nuclear densities on the cooling of neutron stars. I also describe how the recent observation of the cooling of the neutron star in the supernova remnant Cassiopeia A may provide us with the first direct evidence for the occurrence of such pairing. It also implies a size of the neutron 3P-F2 energy gap of the order of 0.1 MeV.
176 - Yudai Suwa 2013
The gravitational collapse, bounce, the explosion of an iron core of an 11.2 $M_{odot}$ star is simulated by two-dimensional neutrino-radiation hydrodynamic code. The explosion is driven by the neutrino heating aided by multi-dimensional hydrodynamic effects such as the convection. Following the explosion phase, we continue the simulation focusing on the thermal evolution of the protoneutron star up to $sim$70 s when the crust of the neutron star is formed using one-dimensional simulation. We find that the crust forms at high-density region ($rhosim10^{14}$ g cm$^{-3}$) and it would proceed from inside to outside. This is the first self-consistent simulation that successfully follows from the collapse phase to the protoneutron star cooling phase based on the multi-dimensional hydrodynamic simulation.
Recent developments in the theory of pure neutron matter and experiments concerning the symmetry energy of nuclear matter, coupled with recent measurements of high-mass neutron stars, now allow for relatively tight constraints on the equation of state of dense matter. We review how these constraints are formulated and describe the implications they have for neutron stars and core-collapse supernovae. We also examine thermal properties of dense matter, which are important for supernovae and neutron star mergers, but which cannot be nearly as well constrained at this time by experiment. In addition, we consider the role of the equation of state in medium-energy heavy-ion collisions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا