No Arabic abstract
The deflection of lights trajectory has been studied in many different spacetime geometries in weak and strong gravity, including the special cases of spherically symmetric static and spinning black holes. It is also well known that the rotation of massive objects results in the dragging of inertial frames in the spacetime geometry. We present here a discussion of the asymmetry that appears explicitly in the exact analytical expression for the bending angle of light on the equatorial plane of the spinning, or Kerr, black hole.
Christodoulou and Rovelli have shown that the maximal interior volume of a Schwarzschild black hole linearly grows with time. Recently, their conclusion has been extended to the Reissner{-}Nordstr$ddot{text{o}}$m and Kerr black holes. Meanwhile, the entropy of interior volume in a Schwarzschild black hole has also been calculated. Here, a new method calculating the entropy of interior volume of the black hole is given and it can be used in more general cases. Using this method, the entropy associated with the volume of a Kerr black hole is calculated and it is found that the entropy is proportional to the Bekenstein-Hawking entropy in the early stage of black hole evaporation. Using the differential form, the entropy of interior volume in a Schwarzschild black hole is recalculated. It is shown that the proportionality coefficient between the entropy and the Bekenstein-Hawking entropy is half of that given in the previous literature. Moreover, the black hole information paradox is brought up again and discussed.
In this paper we compute the Arnowitt-Deser-Misner (ADM) mass, the angular momentum and the charge of the Kerr black hole solution in the scalar-tensor-vector gravity theory [known as the Kerr-MOG (modified-gravity) black hole configuration]; we study in detail as well several properties of this solution such as the stationary limit surface, the event horizon, and the ergosphere, and conclude that the new deformation parameter $alpha$ affects the geometry of the Kerr-MOG black hole significantly in addition to the ADM mass and spin parameters. Moreover, the ADM mass and black hole event horizon definitions allow us to set a novel upper bound on the deformation parameter and to reveal the correct upper bound on the black hole spin. We further find the geodesics of motion of stars and photons around the Kerr-MOG black hole. By using them we reveal the expressions for the mass and the rotation parameter of the Kerr-MOG black hole in terms of the red- and blueshifts of photons emitted by geodesic particles, i.e., by stars. These calculations supply a new and simple method to further test the general theory of relativity in its strong field limit: If the measured red- and blueshifts of photons exceed the bounds imposed by the general theory of relativity, then the black hole is not of Kerr type. It could also happen that the measurements are allowed by the Kerr-MOG metric, implying that the correct description of the dynamics of stars around a given black hole should be performed using MOG or another modified theory of gravity that correctly predicts the observations. In particular, this method can be applied to test the nature of the putative black hole hosted at the center of the Milky Way in the near future.
Acoustic black hole is becoming an attractive topic in recent years, for it open-up new direction for experimental explorations of black holes in laboratories. In this work, the gravitational bending of acoustic Schwarzschild black hole is investigated. We resort to the approach developed by Gibbons and Werner, in which the gravitational bending is calculated using the Gauss-Bonnet theorem in geometrical topology. In this approach, the gravitational bending is directly connected with the topological properties of curved spacetime. The deflection angle of light for acoustic Schwarzschild black hole is calculated and carefully analyzed in this work. The results show that the gravitational bending effect in acoustic black hole is enhanced, compared with those in conventional Schwarzschild black hole. This observation indicates that the acoustic black holes may be more easily detectable in gravitational bending and weak gravitational lensing observations. Keywords: Gravitational Bending; Gauss-Bonnet Theorem; Acoustic Schwarzschild Black Hole
In the present paper, we have considered the three parameters: mass, charge and rotation to discuss their combined effect on frame dragging for a charged rotating body. If we consider the ray of light which is emitted radially outward from a rotating body then the frame dragging shows a periodic nature with respect to coordinate $phi$ (azimuthal angle). It has been found that the value of frame dragging obtains a maximum at, $ phi =frac{pi}{2}$ and a minimum at $ phi =frac{3 pi}{2}$.
We analyze rigidly rotating Nambu--Goto strings in the Kerr spacetime, particularly focusing on the strings sticking in the horizon. From the regularity on the horizon, we find the condition for sticking in the horizon, which is consistent with the second law of the black hole thermodynamics. Energy extraction through the sticking string from a Kerr black hole occurs. We obtain the maximum value of the luminosity of the energy extraction.