Do you want to publish a course? Click here

Optimal proposals for Approximate Bayesian Computation

114   0   0.0 ( 0 )
 Added by Benjamin D. Wandelt
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

We derive the optimal proposal density for Approximate Bayesian Computation (ABC) using Sequential Monte Carlo (SMC) (or Population Monte Carlo, PMC). The criterion for optimality is that the SMC/PMC-ABC sampler maximise the effective number of samples per parameter proposal. The optimal proposal density represents the optimal trade-off between favoring high acceptance rate and reducing the variance of the importance weights of accepted samples. We discuss two convenient approximations of this proposal and show that the optimal proposal density gives a significant boost in the expected sampling efficiency compared to standard kernels that are in common use in the ABC literature, especially as the number of parameters increases.



rate research

Read More

80 - Fangzheng Xie , Yanxun Xu 2019
We propose a Bayesian approach, called the posterior spectral embedding, for estimating the latent positions in random dot product graphs, and prove its optimality. Unlike the classical spectral-based adjacency/Laplacian spectral embedding, the posterior spectral embedding is a fully-likelihood based graph estimation method taking advantage of the Bernoulli likelihood information of the observed adjacency matrix. We develop a minimax-lower bound for estimating the latent positions, and show that the posterior spectral embedding achieves this lower bound since it both results in a minimax-optimal posterior contraction rate, and yields a point estimator achieving the minimax risk asymptotically. The convergence results are subsequently applied to clustering in stochastic block models, the result of which strengthens an existing result concerning the number of mis-clustered vertices. We also study a spectral-based Gaussian spectral embedding as a natural Bayesian analogy of the adjacency spectral embedding, but the resulting posterior contraction rate is sub-optimal with an extra logarithmic factor. The practical performance of the proposed methodology is illustrated through extensive synthetic examples and the analysis of a Wikipedia graph data.
Approximate Bayesian computation (ABC) is computationally intensive for complex model simulators. To exploit expensive simulations, data-resampling via bootstrapping can be employed to obtain many artificial datasets at little cost. However, when using this approach within ABC, the posterior variance is inflated, thus resulting in biased posterior inference. Here we use stratified Monte Carlo to considerably reduce the bias induced by data resampling. We also show empirically that it is possible to obtain reliable inference using a larger than usual ABC threshold. Finally, we show that with stratified Monte Carlo we obtain a less variable ABC likelihood. Ultimately we show how our approach improves the computational efficiency of the ABC samplers. We construct several ABC samplers employing our methodology, such as rejection and importance ABC samplers, and ABC-MCMC samplers. We consider simulation studies for static (Gaussian, g-and-k distribution, Ising model, astronomical model) and dynamic models (Lotka-Volterra). We compare against state-of-art sequential Monte Carlo ABC samplers, synthetic likelihoods, and likelihood-free Bayesian optimization. For a computationally expensive Lotka-Volterra case study, we found that our strategy leads to a more than 10-fold computational saving, compared to a sampler that does not use our novel approach.
In the setting of high-dimensional linear models with Gaussian noise, we investigate the possibility of confidence statements connected to model selection. Although there exist numerous procedures for adaptive point estimation, the construction of adaptive confidence regions is severely limited (cf. Li, 1989). The present paper sheds new light on this gap. We develop exact and adaptive confidence sets for the best approximating model in terms of risk. One of our constructions is based on a multiscale procedure and a particular coupling argument. Utilizing exponential inequalities for noncentral chi-squared distributions, we show that the risk and quadratic loss of all models within our confidence region are uniformly bounded by the minimal risk times a factor close to one.
We study a nonparametric Bayesian approach to estimation of the volatility function of a stochastic differential equation driven by a gamma process. The volatility function is modelled a priori as piecewise constant, and we specify a gamma prior on its values. This leads to a straightforward procedure for posterior inference via an MCMC procedure. We give theoretical performance guarantees (contraction rates for the posterior) for the Bayesian estimate in terms of the regularity of the unknown volatility function. We illustrate the method on synthetic and real data examples.
Approximate Bayesian computation methods are useful for generative models with intractable likelihoods. These methods are however sensitive to the dimension of the parameter space, requiring exponentially increasing resources as this dimension grows. To tackle this difficulty, we explore a Gibbs version of the ABC approach that runs component-wise approximate Bayesian computation steps aimed at the corresponding conditional posterior distributions, and based on summary statistics of reduced dimensions. While lacking the standard justifications for the Gibbs sampler, the resulting Markov chain is shown to converge in distribution under some partial independence conditions. The associated stationary distribution can further be shown to be close to the true posterior distribution and some hierarchic
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا