A generalized Liebs theorem and its applications to spectrum estimates for a sum of random matrices


Abstract in English

In this paper we prove the concavity of the $k$-trace functions, $Amapsto (text{Tr}_k[exp(H+ln A)])^{1/k}$, on the convex cone of all positive definite matrices. $text{Tr}_k[A]$ denotes the $k_{mathrm{th}}$ elementary symmetric polynomial of the eigenvalues of $A$. As an application, we use the concavity of these $k$-trace functions to derive tail bounds and expectation estimates on the sum of the $k$ largest (or smallest) eigenvalues of a sum of random matrices.

Download