Do you want to publish a course? Click here

Links with splitting number one

188   0   0.0 ( 0 )
 Added by Marc Lackenby
 Publication date 2018
  fields
and research's language is English
 Authors Marc Lackenby




Ask ChatGPT about the research

We provide an algorithm to determine whether a link L admits a crossing change that turns it into a split link, under some fairly mild hypotheses on L. The algorithm also provides a complete list of all such crossing changes. It can therefore also determine whether the unlinking number of L is 1.



rate research

Read More

162 - Michael J. Williams 2009
It is shown that if the exterior of a link L in the three sphere admits a genus 2 Heegaard splitting, then L has Generalized Property R.
In the 1980s Daryl Cooper introduced the notion of a C-complex (or clasp-complex) bounded by a link and explained how to compute signatures and polynomial invariants using a C-complex. Since then this was extended by works of Cimasoni, Florens, Mellor, Melvin, Conway, Toffoli, Friedl, and others to compute other link invariants. Informally a C-complex is a union of surfaces which are allowed to intersect each other in clasps. The purpose of the current paper is to study the minimal number of clasps amongst all C-complexes bounded by a fixed link $L$. This measure of complexity is related to the number of crossing changes needed to reduce $L$ to a boundary link. We prove that if $L$ is a 2-component link with nonzero linking number, then the linking number determines the minimal number of clasps amongst all C-complexes. In the case of 3-component links, the triple linking number provides an additional lower bound on the number of clasps in a C-complex.
We give asymptotically sharp upper bounds for the Khovanov width and the dealternation number of positive braid links, in terms of their crossing number. The same braid-theoretic technique, combined with Ozsvath, Stipsicz, and Szabos Upsilon invariant, allows us to determine the exact cobordism distance between torus knots with braid index two and six.
118 - Michael J. Williams 2009
A knot k in a closed orientable 3-manifold is called nonsimple if the exterior of k possesses a properly embedded essential surface of nonnegative Euler characteristic. We show that if k is a nonsimple prime tunnel number one knot in a lens space M (where M does not contain any embedded Klein bottles), then k is a (1,1) knot. Elements of the proof include handle addition and Dehn filling results/techniques of Jaco, Eudave-Munoz and Gordon as well as structure results of Schultens on the Heegaard splittings of graph manifolds.
The Thurston norm of a 3-manifold measures the complexity of surfaces representing two-dimensional homology classes. We study the possible unit balls of Thurston norms of 3-manifolds $M$ with $b_1(M) = 2$, and whose fundamental groups admit presentations with two generators and one relator. We show that even among this special class, there are 3-manifolds such that the unit ball of the Thurston norm has arbitrarily many faces.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا