Do you want to publish a course? Click here

Bit Threads and Holographic Monogamy

186   0   0.0 ( 0 )
 Added by Temple He
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

Bit threads provide an alternative description of holographic entanglement, replacing the Ryu-Takayanagi minimal surface with bulk curves connecting pairs of boundary points. We use bit threads to prove the monogamy of mutual information (MMI) property of holographic entanglement entropies. This is accomplished using the concept of a so-called multicommodity flow, adapted from the network setting, and tools from the theory of convex optimization. Based on the bit thread picture, we conjecture a general ansatz for a holographic state, involving only bipartite and perfect-tensor type entanglement, for any decomposition of the boundary into four regions. We also give new proofs of analogous theorems on networks.



rate research

Read More

Quantum corrections to holographic entanglement entropy require knowledge of the bulk quantum state. In this paper, we derive a novel dual prescription for the generalized entropy that allows us to interpret the leading quantum corrections in a geometric way with minimal input from the bulk state. The equivalence is proven using tools borrowed from convex optimization. The new prescription does not involve bulk surfaces but instead uses a generalized notion of a flow, which allows for possible sources or sinks in the bulk geometry. In its discrete version, our prescription can alternatively be interpreted in terms of a set of Planck-thickness bit threads, which can be either classical or quantum. This interpretation uncovers an aspect of the generalized entropy that admits a neat information-theoretic description, namely, the fact that the quantum corrections can be cast in terms of entanglement distillation of the bulk state. We also prove some general properties of our prescription, including nesting and a quantum version of the max multiflow theorem. These properties are used to verify that our proposal respects known inequalities that a von Neumann entropy must satisfy, including subadditivity and strong subadditivity, as well as to investigate the fate of the holographic monogamy. Finally, using the Iyer-Wald formalism we show that for cases with a local modular Hamiltonian there is always a canonical solution to the program that exploits the property of bulk locality. Combining with previous results by Swingle and Van Raamsdonk, we show that the consistency of this special solution requires the semi-classical Einsteins equations to hold for any consistent perturbative bulk quantum state.
We revisit the recent reformulation of the holographic prescription to compute entanglement entropy in terms of a convex optimization problem, introduced by Freedman and Headrick. According to it, the holographic entanglement entropy associated to a boundary region is given by the maximum flux of a bounded, divergenceless vector field, through the corresponding region. Our work leads to two main results: (i) We present a general algorithm that allows the construction of explicit thread configurations in cases where the minimal surface is known. We illustrate the method with simple examples: spheres and strips in vacuum AdS, and strips in a black brane geometry. Studying more generic bulk metrics, we uncover a sufficient set of conditions on the geometry and matter fields that must hold to be able to use our prescription. (ii) Based on the nesting property of holographic entanglement entropy, we develop a method to construct bit threads that maximize the flux through a given bulk region. As a byproduct, we are able to construct more general thread configurations by combining (i) and (ii) in multiple patches. We apply our methods to study bit threads which simultaneously compute the entanglement entropy and the entanglement of purification of mixed states and comment on their interpretation in terms of entanglement distillation. We also consider the case of disjoint regions for which we can explicitly construct the so-called multi-commodity flows and show that the monogamy property of mutual information can be easily illustrated from our constructions.
In the context of holography, entanglement entropy can be studied either by i) extremal surfaces or ii) bit threads, i.e., divergenceless vector fields with a norm bound set by the Planck length. In this paper we develop a new method for metric reconstruction based on the latter approach and show the advantages over existing ones. We start by studying general linear perturbations around the vacuum state. Generic thread configurations turn out to encode the information about the metric in a highly nonlocal way, however, we show that for boundary regions with a local modular Hamiltonian there is always a canonical choice for the perturbed thread configurations that exploits bulk locality. To do so, we express the bit thread formalism in terms of differential forms so that it becomes manifestly background independent. We show that the Iyer-Wald formalism provides a natural candidate for a canonical local perturbation, which can be used to recast the problem of metric reconstruction in terms of the inversion of a particular linear differential operator. We examine in detail the inversion problem for the case of spherical regions and give explicit expressions for the inverse operator in this case. Going beyond linear order, we argue that the operator that must be inverted naturally increases in order. However, the inversion can be done recursively at different orders in the perturbation. Finally, we comment on an alternative way of reconstructing the metric non-perturbatively by phrasing the inversion problem as a particular optimization problem.
The continuous min flow-max cut principle is used to reformulate the complexity=volume conjecture using Lorentzian flows -- divergenceless norm-bounded timelike vector fields whose minimum flux through a boundary subregion is equal to the volume of the homologous maximal bulk Cauchy slice. The nesting property is used to show the rate of complexity is bounded below by conditional complexity, describing a multi-step optimization with intermediate and final target states. Conceptually, discretized Lorentzian flows are interpreted in terms of threads or gatelines such that complexity is equal to the minimum number of gatelines used to prepare a CFT state by an optimal tensor network (TN) discretizing the state. We propose a refined measure of complexity, capturing the role of suboptimal TNs, as an ensemble average. The bulk symplectic potential provides a canonical thread configuration characterizing perturbations around arbitrary CFT states. Its consistency requires the bulk to obey linearized Einsteins equations, which are shown to be equivalent to the holographic first law of complexity, thereby advocating a notion of spacetime complexity.
120 - Temple He , Veronika E. Hubeny , 2020
The domain of allowed von Neumann entropies of a holographic field theory carves out a polyhedral cone -- the holographic entropy cone -- in entropy space. Such polyhedral cones are characterized by their extreme rays. For an arbitrary number of parties, it is known that the so-called perfect tensors are extreme rays. In this work, we constrain the form of the remaining extreme rays by showing that they correspond to geometries with vanishing mutual information between any two parties, ensuring the absence of Bell pair type entanglement between them. This is tantamount to proving that besides subadditivity, all non-redundant holographic entropy inequalities are superbalanced, i.e. not only do UV divergences cancel in the inequality itself (assuming smooth entangling surfaces), but also in the purification thereof.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا