No Arabic abstract
In a networked system, functionality can be seriously endangered when nodes are infected, due to internal random failures or a contagious virus that develops into an epidemic. Given a snapshot of the network representing the nodes states (infected or healthy), infection analysis refers to distinguishing an epidemic from random failures and gathering information for effective countermeasure design. This analysis is challenging due to irregular network structure, heterogeneous epidemic spreading, and noisy observations. This paper treats a network snapshot as a graph signal, and develops effective approaches for infection analysis based on graph signal processing. For the macro (network-level) analysis aiming to distinguish an epidemic from random failures, 1) multiple detection metrics are defined based on the graph Fourier transform (GFT) and neighborhood characteristics of the graph signal; 2) a new class of graph wavelets, distance-based graph wavelets (DBGWs), are developed; and 3) a machine learning-based framework is designed employing either the GFT spectrum or the graph wavelet coefficients as features for infection analysis. DBGWs also enable the micro (node-level) infection analysis, through which the performance of epidemic countermeasures can be improved. Extensive simulations are conducted to demonstrate the effectiveness of all the proposed algorithms in various network settings.
Signal processing over single-layer graphs has become a mainstream tool owing to its power in revealing obscure underlying structures within data signals. For generally, many real-life datasets and systems are characterized by more complex interactions among distinct entities. Such complex interactions may represent multiple levels of interactions that are difficult to be modeled with a single layer graph and can instead be captured by multiple layers of graph connections. Such multilayer/multi-level data structure can be more naturally modeled and captured by a high-dimensional multi-layer network (MLN). This work generalizes traditional graph signal processing (GSP) over multilayer networks for analysis of such multilayer signal features and their interactions. We propose a tensor-based framework of this multilayer network signal processing (M-GSP) in this two-part series. Specially, Part I introduces the fundamentals of M-GSP and studies spectrum properties of MLN Fourier space. We further describe its connections to traditional digital signal processing and GSP. Part II focuses on several major tools within the M-GSP framework for signal processing and data analysis. We provide results to demonstrate the efficacy and benefits of applying multilayer networks and the M-GSP in practical scenarios.
One of the new scientific ways of understanding discourse dynamics is analyzing the public data of social networks. This researchs aim is Post-structuralist Discourse Analysis (PDA) of Covid-19 phenomenon (inspired by Laclau and Mouffes Discourse Theory) by using Intelligent Data Mining for Persian Society. The examined big data is five million tweets from 160,000 users of the Persian Twitter network to compare two discourses. Besides analyzing the tweet texts individually, a social network graph database has been created based on retweets relationships. We use the VoteRank algorithm to introduce and rank people whose posts become word of mouth, provided that the total information spreading scope is maximized over the network. These users are also clustered according to their word usage pattern (the Gaussian Mixture Model is used). The constructed discourse of influential spreaders is compared to the most active users. This analysis is done based on Covid-related posts over eight episodes. Also, by relying on the statistical content analysis and polarity of tweet words, discourse analysis is done for the whole mentioned subpopulations, especially for the top individuals. The most important result of this research is that the Twitter subjects discourse construction is government-based rather than community-based. The analyzed Iranian society does not consider itself responsible for the Covid-19 wicked problem, does not believe in participation, and expects the government to solve all problems. The most active and most influential users similarity is that political, national, and critical discourse construction is the predominant one. In addition to the advantages of its research methodology, it is necessary to pay attention to the studys limitations. Suggestion for future encounters of Iranian society with similar crises is given.
Wireless power transfer (WPT) is an emerging paradigm that will enable using wireless to its full potential in future networks, not only to convey information but also to deliver energy. Such networks will enable trillions of future low-power devices to sense, compute, connect, and energize anywhere, anytime, and on the move. The design of such future networks brings new challenges and opportunities for signal processing, machine learning, sensing, and computing so as to make the best use of the RF radiations, spectrum, and network infrastructure in providing cost-effective and real-time power supplies to wireless devices and enable wireless-powered applications. In this paper, we first review recent signal processing techniques to make WPT and wireless information and power transfer as efficient as possible. Topics include power amplifier and energy harvester nonlinearities, active and passive beamforming, intelligent reflecting surfaces, receive combining with multi-antenna harvester, modulation, coding, waveform, massive MIMO, channel acquisition, transmit diversity, multi-user power region characterization, coordinated multipoint, and distributed antenna systems. Then, we overview two different design methodologies: the model and optimize approach relying on analytical system models, modern convex optimization, and communication theory, and the learning approach based on data-driven end-to-end learning and physics-based learning. We discuss the pros and cons of each approach, especially when accounting for various nonlinearities in wireless-powered networks, and identify interesting emerging opportunities for the approaches to complement each other. Finally, we identify new emerging wireless technologies where WPT may play a key role -- wireless-powered mobile edge computing and wireless-powered sensing -- arguing WPT, communication, computation, and sensing must be jointly designed.
Finding the infection sources in a network when we only know the network topology and infected nodes, but not the rates of infection, is a challenging combinatorial problem, and it is even more difficult in practice where the underlying infection spreading model is usually unknown a priori. In this paper, we are interested in finding a source estimator that is applicable to various spreading models, including the Susceptible-Infected (SI), Susceptible-Infected-Recovered (SIR), Susceptible-Infected-Recovered-Infected (SIRI), and Susceptible-Infected-Susceptible (SIS) models. We show that under the SI, SIR and SIRI spreading models and with mild technical assumptions, the Jordan center is the infection source associated with the most likely infection path in a tree network with a single infection source. This conclusion applies for a wide range of spreading parameters, while it holds for regular trees under the SIS model with homogeneous infection and recovery rates. Since the Jordan center does not depend on the infection, recovery and reinfection rates, it can be regarded as a universal source estimator. We also consider the case where there are k>1 infection sources, generalize the Jordan center definition to a k-Jordan center set, and show that this is an optimal infection source set estimator in a tree network for the SI model. Simulation results on various general synthetic networks and real world networks suggest that Jordan center-based estimators consistently outperform the betweenness, closeness, distance, degree, eigenvector, and pagerank centrality based heuristics, even if the network is not a tree.
Zeroth-order (ZO) optimization is a subset of gradient-free optimization that emerges in many signal processing and machine learning applications. It is used for solving optimization problems similarly to gradient-based methods. However, it does not require the gradient, using only function evaluations. Specifically, ZO optimization iteratively performs three major steps: gradient estimation, descent direction computation, and solution update. In this paper, we provide a comprehensive review of ZO optimization, with an emphasis on showing the underlying intuition, optimization principles and recent advances in convergence analysis. Moreover, we demonstrate promising applications of ZO optimization, such as evaluating robustness and generating explanations from black-box deep learning models, and efficient online sensor management.