Do you want to publish a course? Click here

COLDz: Shape of the CO Luminosity Function at High Redshift and the Cold Gas History of the Universe

77   0   0.0 ( 0 )
 Added by Dominik Riechers
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the first detailed measurement of the shape of the CO luminosity function at high redshift, based on $>$320 hr of the NSFs Karl G. Jansky Very Large Array (VLA) observations over an area of $sim$60 arcmin$^2$ taken as part of the CO Luminosity Density at High Redshift (COLDz) survey. COLDz blindly selects galaxies based on their cold gas content through CO($J$=1$to$0) emission at $z$$sim$2-3 and CO($J$=2$to$1) at $z$$sim$5-7 down to a CO luminosity limit of log($L_{rm CO}$/K km s$^{-1}$ pc$^2$)$simeq$9.5. We find that the characteristic luminosity and bright end of the CO luminosity function are substantially higher than predicted by semi-analytical models, but consistent with empirical estimates based on the infrared luminosity function at $z$$sim$2. We also present the currently most reliable measurement of the cosmic density of cold gas in galaxies at early epochs, i.e., the cold gas history of the universe, as determined over a large cosmic volume of $sim$375,000 Mpc$^3$. Our measurements are in agreement with an increase of the cold gas density from $z$$sim$0 to $z$$sim$2-3, followed by a possible decline towards $z$$sim$5-7. These findings are consistent with recent surveys based on higher-$J$ CO line measurements, upon which COLDz improves in terms of statistical uncertainties by probing $sim$50-100 times larger areas and in the reliability of total gas mass estimates by probing the low-$J$ CO lines accessible to the VLA. Our results thus appear to suggest that the cosmic star-formation rate density follows an increased cold molecular gas content in galaxies towards its peak about 10 billion years ago, and that its decline towards the earliest epochs is likely related to a lower overall amount of cold molecular gas (as traced by CO) bound in galaxies towards the first billion years after the Big Bang.



rate research

Read More

We describe the CO Luminosity Density at High-z (COLDz) survey, the first spectral line deep field targeting CO(1-0) emission from galaxies at $z=1.95-2.85$ and CO(2-1) at $z=4.91-6.70$. The main goal of COLDz is to constrain the cosmic density of molecular gas at the peak epoch of cosmic star formation. By targeting both a wide ($sim$51 arcmin$^2$) and a deep area ($sim$9 arcmin$^2$), the survey is designed to robustly constrain the bright end and the characteristic luminosity of the CO(1-0) luminosity function. An extensive analysis of the reliability of our line candidates, and new techniques provide detailed completeness and statistical corrections as necessary to determine the best constraints to date on the CO luminosity function. Our blind search for CO(1-0) uniformly selects starbursts and massive Main Sequence galaxies based on their cold molecular gas masses. Our search also detects CO(2-1) line emission from optically dark, dusty star-forming galaxies at $z>5$. We find a range of spatial sizes for the CO-traced gas reservoirs up to $sim40$ kpc, suggesting that spatially extended cold molecular gas reservoirs may be common in massive, gas-rich galaxies at $zsim2$. Through CO line stacking, we constrain the gas mass fraction in previously known typical star-forming galaxies at $z=2$-3. The stacked CO detection suggests lower molecular gas mass fractions than expected for massive Main Sequence galaxies by a factor of $sim3-6$. We find total CO line brightness at $sim34,$GHz of $0.45pm0.2,mu$K, which constrains future line intensity mapping and CMB experiments.
363 - Marcel Neeleman 2014
A new method is used to measure the physical conditions of the gas in damped Lyman-alpha systems (DLAs). Using high resolution absorption spectra of a sample of 80 DLAs, we are able to measure the ratio of the upper to lower fine-structure levels of the ground state of C II and Si II. These ratios are determined solely by the physical conditions of the gas. We explore the allowed physical parameter space using a Monte Carlo Markov Chain method to constrain simultaneously the temperature, neutral hydrogen density, and electron density of each DLA. The results indicate that at least 5 % of all DLAs have the bulk of their gas in a dense, cold phase with typical densities of ~100 cm-3 and temperatures below 500 K. We further find that the typical pressure of DLAs in our sample is log(P/k) = 3.4 [K cm-3], which is comparable to the pressure of the local interstellar medium (ISM), and that the components containing the bulk of the neutral gas can be quite small with absorption sizes as small as a few parsec. We show that the majority of the systems are consistent with having densities significantly higher than expected from a purely canonical WNM, indicating that significant quantities of dense gas (i.e. n_H > 0.1 cm-3) are required to match observations. Finally, we identify 8 systems with positive detections of Si II*. These systems have pressures (P/k) in excess of 20000 K cm-3, which suggest that these systems tag a highly turbulent ISM in young, star-forming galaxies.
144 - Girish Kulkarni , 2018
Determinations of the UV luminosity function of AGN at high redshifts are important for constraining the AGN contribution to reionization and understanding the growth of supermassive black holes. Recent inferences of the luminosity function suffer from inconsistencies arising from inhomogeneous selection and analysis of AGN data. We address this problem by constructing a sample of more than 80,000 colour-selected AGN from redshift z=0 to 7.5. While this sample is composed of multiple data sets with spectroscopic redshifts and completeness estimates, we homogenise these data sets to identical cosmologies, intrinsic AGN spectra, and magnitude systems. Using this sample, we derive the AGN UV luminosity function from redshift z=0 to 7.5. The luminosity function has a double power law form at all redshifts. The break magnitude $M_*$ of the AGN luminosity function shows a steep brightening from $M_*sim -24$ at z=0.7 to $M_*sim -29$ at z=6. The faint-end slope $beta$ significantly steepens from $-1.7$ at $z<2.2$ to $-2.4$ at $zsimeq 6$. In spite of this steepening, the contribution of AGN to the hydrogen photoionization rate at $zsim 6$ is subdominant (< 3%), although it can be non-negligible (~10%) if these luminosity functions hold down to $M_{1450}=-18$. Under reasonable assumptions, AGN can reionize HeII by redshift z=2.9. At low redshifts (z<0.5), AGN can produce about half of the hydrogen photoionization rate inferred from the statistics of HI absorption lines in the IGM. Our global analysis of the luminosity function also reveals important systematic errors in the data, particularly at z=2.2--3.5, which need to be addressed and incorporated in the AGN selection function in future in order to improve our results. We make various fitting functions, luminosity function analysis codes, and homogenised AGN data publicly available.
We present the hard-band ($2-10,mathrm{keV}$) X-ray luminosity function (HXLF) of $0.5-2,mathrm{keV}$ band selected AGN at high redshift. We have assembled a sample of 141 AGN at $3<zlesssim5$ from X-ray surveys of different size and depth, in order to sample different regions in the $ L_X - z$ plane. The HXLF is fitted in the range $mathrm{logL_Xsim43-45}$ with standard analytical evolutionary models through a maximum likelihood procedure. The evolution of the HXLF is well described by a pure density evolution, with the AGN space density declining by a factor of $sim10$ from $z=3$ to 5. A luminosity-dependent density evolution model which, normally, best represents the HXLF evolution at lower redshift, is also consistent with the data, but a larger sample of low-luminosity ($mathrm{logL_X}<44$), high-redshift AGN is necessary to constrain this model. We also estimated the intrinsic fraction of AGN obscured by a column density $mathrm{logN_H}geq23$ to be $0.54pm0.05$, with no strong dependence on luminosity. This fraction is higher than the value in the Local Universe, suggesting an evolution of the luminous ($mathrm{L_X>10^{44}mathrm{erg,s^{-1}}}$) obscured AGN fraction from $z=0$ to $z>3$.
We obtain a sample of 87 radio-loud QSOs in the redshift range 3.6<z<4.4 by cross-correlating sources in the FIRST radio survey S{1.4GHz} > 1 mJy with star-like objects having r <20.2 in SDSS Data Release 7. Of these 87 QSOs, 80 are spectroscopically classified in previous work (mainly SDSS), and form the training set for a search for additional such sources. We apply our selection to 2,916 FIRST-DR7 pairs and find 15 likely candidates. Seven of these are confirmed as high-redshift quasars, bringing the total to 87. The candidates were selected using a neural-network, which yields 97% completeness (fraction of actual high-z QSOs selected as such) and an efficiency (fraction of candidates which are high-z QSOs) in the range of 47 to 60%. We use this sample to estimate the binned optical luminosity function of radio-loud QSOs at $zsim 4$, and also the LF of the total QSO population and its comoving density. Our results suggest that the radio-loud fraction (RLF) at high z is similar to that at low-z and that other authors may be underestimating the fraction at high-z. Finally, we determine the slope of the optical luminosity function and obtain results consistent with previous studies of radio-loud QSOs and of the whole population of QSOs. The evolution of the luminosity function with redshift was for many years interpreted as a flattening of the bright end slope, but has recently been re-interpreted as strong evolution of the break luminosity for high-z QSOs, and our results, for the radio-loud population, are consistent with this.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا