No Arabic abstract
Several astronomical surveys aimed at the investigation of the extragalactic components were carried out in order to map systematically the universe and its constituents. An excellent level of detail is needed, and it is possible only using space telescopes or with the application of adaptive optics (AO) techniques for ground-based observatories. By simulating K-band observations of 6000 high-redshift galaxies in the Chandra Deep Field South region, we have already shown how an extremely large telescope can carry out photometric surveys successfully using the Global-MCAO, a natural guide stars based technique that allows the development of extragalactic research, otherwise impracticable without using laser guide stars. As the outcome of the analysis represents an impact science case for the new instruments on upcoming ground-based telescopes, here we show how the investigation of other observed deep fields could profit from such a technique. Further to an overview of the surveys suitable for the proposed approach, we show preliminary estimations both on geometrical (FoV and height) and purely AO perspectives (richness and homogeneity of guide stars in the area) for planned giant telescope.
Deep observations of the Universe, usually as a part of sky surveys, are one of the symbols of the modern astronomy because they can allow big collaborations, exploiting multiple facilities and shared knowledge. The new generation of extremely large telescopes will play a key role because of their angular resolution and their capability in collecting the light of faint sources. Our simulations combine technical, tomographic and observational information, and benefit of the Global-Multi Conjugate Adaptive Optics (GMCAO) approach, a well demonstrated method that exploits only natural guide stars to correct the scientific field of view from the atmospheric turbulence. By simulating K-band observations of 6000 high redshift galaxies in the Chandra Deep Field South area, we have shown how an ELT can carry out photometric surveys successfully, recovering morphological and structural parameters. We present here a wide statistics of the expected performance of a GMCAO-equipped ELT in 22 well-known surveys in terms of SR.
We propose a many-core CPU architecture for Extremely Large Telescope (ELT) scale adaptive optics (AO) real-time control (RTC) for the multi-conjugate AO (MCAO) and laser-tomographic AO (LTAO) modes. MCAO and LTAO differ from the more conventional single-conjugate (SCAO) mode by requiring more wavefront sensor (WFS) measurements and more deformable mirrors to achieve a wider field of correction, further increasing the computational requirements of ELT-scale AO. We demonstrate results of our CPU based AO RTC operating firstly in SCAO mode, using either Shack-Hartmann or Pyramid style WFS processing, and then in MCAO mode and in LTAO mode using the specifications of the proposed ELT instruments, MAORY and HARMONI. All results are gathered using a CPU based camera simulator utilising UDP packets to better demonstrate the pixel streaming and pipe-lining of the RTC software. We demonstrate the effects of switching parameters, streaming telemetry and implicit pseudo open-loop control (POLC) computation on the MCAO and LTAO modes. We achieve results of < 600$mu$s latency with an ELT scale SCAO setup using Shack-Hartman processing and < 800$mu$s latency with SCAO Pyramid WFS processing. We show that our MCAO and LTAO many core CPU architecture can achieve full system latencies of < 1000$mu$s with jitters < 40$mu$s RMS. We find that a CPU based AO RTC architecture has a good combination of performance, flexibility and maintainability for ELT-scale AO systems.
The Global-Multi Conjugated Adaptive Optics (GMCAO) approach offers an alternative way to correct an adequate scientific Field of View (FoV) using only natural guide stars (NGSs) to extremely large ground-based telescopes. Thus, even in the absence of laser guide stars, a GMCAO-equipped ELT-like telescope can achieve optimal performance in terms of Strehl Ratio (SR), retrieving impressive results in studying star-poor fields, as in the cases of the deep field observations. The benefits and usability of GMCAO have been demonstrated by studying 6000 mock high redshift galaxies in the Chandra Deep Field South region. However, a systematic study simulating observations in several portions of the sky is mandatory to have a robust statistic of the GMCAO performance. Technical, tomographic and astrophysical parameters, discussed here, are given as inputs to GIUSTO, an IDL-based code that estimates the SR over the considered field, and the results are analyzed with statistical considerations. The best performance is obtained using stars that are relatively close to the Scientific FoV; therefore, the SR correlates with the mean off-axis position of NGSs, as expected, while their magnitude plays a secondary role. This study concludes that the SRs correlate linearly with the galactic latitude, as also expected. Because of the lack of natural guide stars needed for low-order aberration sensing, the GMCAO confirms as a promising technique to observe regions that can not be studied without the use of laser beacons. It represents a robust alternative way or a risk mitigation strategy for laser approaches on the ELTs.
We present in this study a first analysis of the astrometric error budget of absolute astrometry relative to background galaxies using adaptive optics. We use for this analysis multi-conjugated adaptive optics (MCAO) images obtained with GeMS/GSAOI at Gemini South. We find that it is possible to obtain 0.3 mas reference precision in a random field with 1 hour on source using faint background galaxies. Systematic errors are correctable below that level, such that the overall error is approximately 0.4 mas. Because the reference sources are extended, we find it necessary to correct for the dependency of the PSF centroid on the used aperture size, which would otherwise cause an important bias. This effect needs also to be considered for Extremely Large Telescopes (ELTs). When this effect is corrected, ELTs have the potential to measure proper motions of dwarfs galaxies around M31 with 10 km/s accuracy over a baseline of 5 years.
We present the consolidated scientific case for multi-object spectroscopy with the MOSAIC concept on the European ELT. The cases span the full range of ELT science and require either high multiplex or high definition observations to best exploit the excellent sensitivity and wide field-of-view of the telescope. Following scientific prioritisation by the Science Team during the recent Phase A study of the MOSAIC concept, we highlight four key surveys designed for the instrument using detailed simulations of its scientific performance. We discuss future ways to optimise the conceptual design of MOSAIC in Phase B, and illustrate its competitiveness and unique capabilities by comparison with other facilities that will be available in the 2020s.