Do you want to publish a course? Click here

Mass composition of ultra-high-energy cosmic rays with the Telescope Array Surface Detector Data

76   0   0.0 ( 0 )
 Added by Yana Zhezher
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The results on ultra-high-energy cosmic rays (UHECR) mass composition obtained with the Telescope Array surface detector are presented. The analysis employs the boosted decision tree (BDT) multivariate analysis built upon 14 observables related to both the properties of the shower front and the lateral distribution function. The multivariate classifier is trained with Monte-Carlo sets of events induced by the primary protons and iron. An average atomic mass of UHECR is presented for energies $10^{18.0}-10^{20.0} mbox{eV}$. The average atomic mass of primary particles shows no significant energy dependence and corresponds to $langle ln A rangle = 2.0 pm 0.1 (stat.) pm 0.44 (syst.)$. The result is compared to the mass composition obtained by the Telescope Array with $mbox{X}_{mbox{max}}$ technique along with the results of other experiments. Possible systematic errors of the method are discussed.



rate research

Read More

We present an upper limit on the flux of ultra-high-energy down-going neutrinos for $E > 10^{18} mbox{eV}$ derived with the nine years of data collected by the Telescope Array surface detector (05-11-2008 -- 05-10-2017). The method is based on the multivariate analysis technique, so-called Boosted Decision Trees (BDT). Proton-neutrino classifier is built upon 16 observables related to both the properties of the shower front and the lateral distribution function.
390 - T. Abu-Zayyad , R. Aida , M. Allen 2012
We study the anisotropy of Ultra-High Energy Cosmic Ray (UHECR) events collected by the Telescope Array (TA) detector in the first 40 months of operation. Following earlier studies, we examine event sets with energy thresholds of 10 EeV, 40 EeV, and 57 EeV. We find that the distributions of the events in right ascension and declination are compatible with an isotropic distribution in all three sets. We then compare with previously reported clustering of the UHECR events at small angular scales. No significant clustering is found in the TA data. We then check the events with E>57 EeV for correlations with nearby active galactic nuclei. No significant correlation is found. Finally, we examine all three sets for correlations with the large-scale structure of the Universe. We find that the two higher-energy sets are compatible with both an isotropic distribution and the hypothesis that UHECR sources follow the matter distribution of the Universe (the LSS hypothesis), while the event set with E>10 EeV is compatible with isotropy and is not compatible with the LSS hypothesis at 95% CL unless large deflection angles are also assumed. We show that accounting for UHECR deflections in a realistic model of the Galactic magnetic field can make this set compatible with the LSS hypothesis.
Previous measurements of the composition of Ultra-High Energy Cosmic Rays(UHECRs) made by the High Resolution Flys Eye(HiRes) and Pierre Auger Observatory(PAO) are seemingly contradictory, but utilize different detection methods, as HiRes was a stereo detector and PAO is a hybrid detector. The five year Telescope Array(TA) Middle Drum hybrid composition measurement is similar in some, but not all, respects in methodology to PAO, and good agreement is evident between data and a light, largely protonic, composition when comparing the measurements to predictions obtained with the QGSJetII-03 and QGSJet-01c models. These models are also in agreement with previous HiRes stereo measurements, confirming the equivalence of the stereo and hybrid methods. The data is incompatible with a pure iron composition, for all models examined, over the available range of energies. The elongation rate and mean values of Xmax are in good agreement with Pierre Auger Observatory data. This analysis is presented using two methods: data cuts using simple geometrical variables and a new pattern recognition technique.
114 - R. Aloisio , V. Berezinsky 2017
Using the Auger mass-composition analysis of ultra high energy cosmic rays, based on the shape-fitting of $X_{max}$ distributions, we demonstrate that mass composition and energy spectra measured by Auger, Telescope Array and HiRes can be brought into good agreement. The shape-fitting analysis of $X_{max}$ distributions shows that the measured sum of proton and Helium fractions, for some hadronic-interaction models, can saturate the total flux. Such p+He model, with small admixture of other light nuclei, naturally follows from cosmology with recombination and reheating phases. The most radical assumption of the presented model is the assumed unreliability of the experimental separation of Helium and protons, which allows to consider He/p ratio as a free parameter. The results presented here show that the models with dominant p+He composition explain well the energy spectrum of the dip in the latest (2015 - 2017) data of Auger and Telescope Array, but have some tension at the highest energies with the expected Greisen-Zatsepin-Kuzmin cutoff. The Auger-Prime upgrade experiment has a great potential to reject or confirm this model.
313 - T.Abu-Zayyad , R.Aida , M.Allen 2013
We measure the spectrum of cosmic rays with energies greater than $10^{18.2}$ eV with the Fluorescence Detectors (FDs) and the Surface Detectors (SDs) of the Telescope Array Experiment using the data taken in our first 2.3-year observation from May 27 2008 to September 7 2010. A hybrid air shower reconstruction technique is employed to improve accuracies in determination of arrival directions and primary energies of cosmic rays using both FD and SD data. The energy spectrum presented here is in agreement with our previously published spectra and the HiRes results.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا