Do you want to publish a course? Click here

Renormalization of mixing angles

84   0   0.0 ( 0 )
 Added by Ansgar Denner
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

We discuss the renormalization of mixing angles for theories with extended scalar sectors. Motivated by shortcomings of existing schemes for mixing angles, we review existing renormalization schemes and introduce new ones based on on-shell conditions or symmetry requirements such as rigid or background-field gauge invariance. Considering in particular the renormalization of the mixing angles in the Two-Higgs-Doublet Model and the Higgs-Singlet Extension of the Standard Model, we compare electroweak corrections within these models for a selection of renormalization schemes. As specific examples, we present next-to-leading-order results on the four-fermion decays of heavy and light CP-even Higgs bosons, $H_1/H_2to WW/Z Zto4f$, and on electroweak Higgs-boson production processes, i.e. Higgs-strahlung and vector-boson fusion. We find that our new proposals for on-shell and symmetry-based renormalization conditions are well-behaved for the considered benchmark scenarios in both models.



rate research

Read More

The proper renormalization of mixing angles in quantum field theories is a long-standing problem. It is relevant for the renormalization of the quark mixing matrix in the Standard Model and for various mixing scenarios in theories beyond. In this contribution we specifically consider theories with extended scalar sectors. We describe renormalization schemes for mixing angles based on combinations of observables or symmetry requirements such as rigid or background-field gauge invariance and compare their properties to previous approaches such as $bar{MS}$ schemes. We formulate specific renormalization conditions for the mixing angles in the Two-Higgs-Doublet Model and the Higgs-Singlet Extension of the Standard Model and calculate electroweak corrections to Higgs-boson decays via W- or Z-boson pairs within these models for a selection of (new and old) renormalization schemes.
143 - Xinyi Zhang , Bo-Qiang Ma 2012
Inspired by a new relation $theta_{13}^{rm PMNS}={theta_C}/{sqrt{2}}$ observed from the relatively large $theta_{13}^{rm PMNS}$, we find that the combination of this relation with the quark-lepton complementarity and the self-complementarity results in correlations of the lepton mixing angles with the quark mixing angles. We find that the three mixing angles in the PMNS matrix are all related to the Wolfenstein parameter $lambda$ in the quark mixing, so they are also correlated. Consequently, the PMNS matrix can be parameterized by $lambda$, A, and a Dirac CP-violating phase $delta$. Such parametrizations for the PMNS matrix have the same explicitly hierarchical structure as the Wolfenstein parametrization for the CKM matrix in the quark mixing, and the bimaximal mixing pattern is deduced at the leading order. We also discuss implications of these phenomenological relations in parametrizations.
Many unified models predict two large neutrino mixing angles, with the charged lepton mixing angles being small and quark-like, and the neutrino masses being hierarchical. Assuming this, we present simple approximate analytic formulae giving the lepton mixing angles in terms of the underlying high energy neutrino mixing angles together with small perturbations due to both charged lepton corrections and renormalisation group (RG) effects, including also the effects of third family canonical normalization (CN). We apply the perturbative formulae to the ubiquitous case of tri-bimaximal neutrino mixing at the unification scale, in order to predict the theoretical corrections to mixing angle predictions and sum rule relations, and give a general discussion of all limiting cases.
We discuss the constraints of lepton mixing angles from lepton number violating processes such as neutrinoless double beta decay, (mu^-)-(e^+) conversion and K decay, $K^- to pi^+mu^-mu^-$ which are allowed only if neutrinos are Majorana particles. The rates of these processes are proportional to the averaged neutrino mass defined by $<m_{ u} >_{a b}equiv |sum_{j=1}^{3}U_{a j} U_{b j}m_j|$ in the absence of right-handed weak coupling. Here $a, b (j)$ are flavour(mass) eigen states and $U_{a j}$ is the left-handed lepton mixing matrix. We obtain the consistency conditions which are satisfied irrelevant to the concrete values of CP violation phases (three phases in Majorana neutrinos). These conditions constrain the lepton mixing angles, neutrino masses $m_i$ and (< m_{ u} >_{a b}). By using these constraints we obtain the limits on the averaged neutrino masses for (mu^-)-(e^+) conversion and K decay, $K^- to pi^+mu^-mu^-$.
140 - Werner Rodejohann 2008
We propose a new parametrization for the quark and lepton mixing matrices: the two 12-mixing angles (the Cabibbo angle and the angle responsible for solar neutrino oscillations) are at zeroth order pi/12 and pi/5, respectively. The resulting 12-elements in the CKM and PMNS matrices, V_{us} and U_{e2}, are in this order irrational but simple algebraic numbers. We note that the cosine of pi/5 is the golden ratio divided by two. The difference between pi/5 and the observed best-fit value of solar neutrino mixing is of the same order as the difference between the observed value and the one for tri-bimaximal mixing. In order to reproduce the central values of current fits, corrections to the zeroth order expressions are necessary. They are small and of the same order and sign for quarks and leptons. We parametrize the perturbations to the CKM and PMNS matrices in a triminimal way, i.e., with three small rotations in an order corresponding to the order of the rotations in the PDG-description of mixing matrices.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا