It has been conjectured that 3d fermions minimally coupled to Chern-Simons gauge fields are dual to 3d critical scalars, also minimally coupled to Chern-Simons gauge fields. The large $N$ arguments for this duality can formally be used to show that Chern-Simons-gauged {it critical} (Gross-Neveu) fermions are also dual to gauged `{it regular} scalars at every order in a $1/N$ expansion, provided both theories are well-defined (when one fine-tunes the two relevant parameters of each of these theories to zero). In the strict large $N$ limit these `quasi-bosonic theories appear as fixed lines parameterized by $x_6$, the coefficient of a sextic term in the potential. While $x_6$ is an exactly marginal deformation at leading order in large $N$, it develops a non-trivial $beta$ function at first subleading order in $1/N$. We demonstrate that the beta function is a cubic polynomial in $x_6$ at this order in $1/N$, and compute the coefficients of the cubic and quadratic terms as a function of the t Hooft coupling. We conjecture that flows governed by this leading large $N$ beta function have three fixed points for $x_6$ at every non-zero value of the t Hooft coupling, implying the existence of three distinct regular bosonic and three distinct dual critical fermionic conformal fixed points, at every value of the t Hooft coupling. We analyze the phase structure of these fixed point theories at zero temperature. We also construct dual pairs of large $N$ fine-tuned renormalization group flows from supersymmetric ${cal N}=2$ Chern-Simons-matter theories, such that one of the flows ends up in the IR at a regular boson theory while its dual partner flows to a critical fermion theory. This construction suggests that the duality between these theories persists at finite $N$, at least when $N$ is large.