Do you want to publish a course? Click here

Microcavity-enhanced Kerr nonlinearity in a vertical-external-cavity surface-emitting laser

75   0   0.0 ( 0 )
 Added by Arash Rahimi-Iman
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Self-mode-locking has become an emerging path to the generation of ultrashort pulses with vertical-external-cavity surface-emitting lasers. In our work, a strong Kerr nonlinearity that is so far assumed to give rise to mode-locked operation is evidenced and a strong nonlinearity enhancement by the microcavity is revealed. We present wavelength-dependent measurements of the nonlinear absorption and nonlinear-refractive-index change in a gain chip using the Z-scan technique. We report negative nonlinear refraction up to 1.5E-11 cm2/W in magnitude in the (InGa)As/Ga(AsP) material system close to the laser design wavelength, which can lead to Kerr lensing. We show that by changing the angle of incidence of the probe beam with respect to the gain chip, the Kerr nonlinearity can be wavelength-tuned, shifting with the microcavity resonance. Such findings may ultimately lead to novel concepts with regard to tailored self-mode-locking behavior achievable by peculiar Kerr-lens chip designs for cost-effective, robust and compact fs-pulsed semiconductor lasers.



rate research

Read More

139 - A. El Amili 2010
The role of coherent population oscillations is evidenced in the noise spectrum of an ultra-low noise lasers. This effect is isolated in the intensity noise spectrum of an optimized single-frequency vertical external cavity surface emitting laser. The coherent population oscillations induced by the lasing mode manifest themselves through their associated dispersion that leads to slow light effects probed by the spontaneous emission present in the non-lasing side modes.
A multiple quantum well (MQW) transistor vertical-cavity surface-emitting laser (T-VCSEL) is designed and numerically modeled. The important physical models and parameters are discussed and validated by modeling a conventional VCSEL and comparing the results with the experiment. The quantum capture/escape process is simulated using the quantum-trap model and shows a significant effect on the electrical output of the T-VCSEL. The parameters extracted from the numerical simulation are imported into the analytic modeling to predict the frequency response and simulate the large-signal modulation up to 40 Gbps.
Temporal Localized States (TLSs) are individually addressable structures traveling in optical resonators. They can be used as bits of information and to generate frequency combs with tunable spectral density. We show that a pair of specially designed nonlinear mirrors, a 1/2 Vertical-Cavity Surface-Emitting Laser and a Semiconductor Saturable Absorber, coupled in self-imaging conditions, can lead to the generation of such TLSs. Our results indicate how a conventional passive mode- locking scheme can be adapted to provide a robust and simple system emitting TLSs and it paves the way towards the observation of three dimensions confined states, the so-called light bullets.
281 - I. Kilen , S. W. Koch , J. Hader 2019
A microscopic study of mode-locked pulse generation is presented for vertical external-cavity surface-emitting lasers utilizing type-II quantum well configurations. The coupled Maxwell semiconductor Bloch equations are solved numerically where the type-II carrier replenishment is modeled via suitably chosen reservoirs. Conditions for stable mode-locked pulses are identified allowing for pulses in the unit[100]{fs} range. Design strategies for type-II configurations are proposed that avoid potentially unstable pulse dynamics.
190 - I. Kilen , J. Hader , S. W. Koch 2018
Microscopic many-body theory coupled to Maxwells equation is used to investigate dual-wavelength operation in vertical external-cavity surface-emitting lasers. The intrinsically dynamic nature of coexisting emission wavelengths in semiconductor lasers is associated with characteristic non-equilibrium carrier dynamics which causes significant deformations of the quasi-equilibrium gain and carrier inversion. Extended numerical simulations are employed to efficiently investigate the parameter space to identify the regime for two-wavelength operation. Using a frequency selective intracavity etalon, two families of modes are stabilized with dynamical interchange of the strongest emission peaks. For this operation mode, anti-correlated intensity noise is observed in agreement with the experiment. A method using effective frequency selective filtering is suggested for stabilization genuine dual-wavelength output.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا