Same-sign Multilepton Signatures of an $SU(2)_R$ Quintuplet at the LHC


Abstract in English

We study in detail the collider signatures of an $SU(2)_R$ fermionic quintuplet in the framework of left-right symmetric model in the context of the 13 TeV LHC. Apart from giving a viable dark matter candidate ($chi^0$), this model provides unique collider imprints in the form of same-sign multileptons through the decays of multi-charged components of the quintuplet. In particular, we consider the scenario where the quintuplet carries $(B - L) = 4$ charge, allowing for the presence of high charge-multiplicity particles with relatively larger mass differences among them compared to $(B - L)$ = 0 or 2. In this paper, we mainly focus on the same-sign n-lepton signatures (nSSL). We show that with an integrated luminosity of 500 $fb^{-1}$, the mass of the neutral component, $M_{chi^0} leq 480~(800)$ GeV can be excluded at 95% CL in the 2SSL (3SSL) channel after imposing several selection criteria. We also show that a $5sigma$ discovery is also achievable if $M_{chi^0} leq 390~(750)$ GeV in the 2SSL (3SSL) channel with 1000 $fb^{-1}$ integrated luminosity.

Download