Do you want to publish a course? Click here

The Athena WFI Science Products Module

114   0   0.0 ( 0 )
 Added by Pragati Pradhan
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Science Products Module (SPM), a US contribution to the Athena Wide Field Imager, is a highly capable secondary CPU that performs special processing on the science data stream. The SPM will have access to both accepted X-ray events and those that were rejected by the on-board event recognition processing. It will include two software modules. The Transient Analysis Module will perform on-board processing of the science images to identify and characterize variability of the prime target and/or detection of serendipitous transient X-ray sources in the field of view. The Background Analysis Module will perform more sophisticated flagging of potential background events as well as improved background characterization, making use of data that are not telemetered to the ground, to provide improved background maps and spectra. We present the preliminary design of the SPM hardware as well as a brief overview of the software algorithms under development.



rate research

Read More

One of the science goals of the Wide Field Imager (WFI) on ESAs Athena X-ray observatory is to map hot gas structures in the universe, such as clusters and groups of galaxies and the intergalactic medium. These deep observations of faint diffuse sources require low background and the best possible knowledge of that background. The WFI Background Working Group is approaching this problem from a variety of directions. Here we present analysis of Geant4 simulations of cosmic ray particles interacting with the structures aboard Athena, producing signal in the WFI. We search for phenomenological correlations between these particle tracks and detected events that would otherwise be categorized as X-rays, and explore ways to exploit these correlations to flag or reject such events in ground processing. In addition to reducing the Athena WFI instrumental background, these results are applicable to understanding the particle component in any silicon-based X-ray detector in space.
147 - A. Rau , N. Meidinger , K. Nandra 2013
The Wide Field Imager (WFI) is one of the two scientific instruments proposed for the Athena+ X-ray observatory. It will provide imaging in the 0.1-15 keV band over a wide field, simultaneously with spectrally and time-resolved photon counting. The instrument is designed to make optimal use of the grasp (collecting area times solid angle product) provided by the optical design of the Athena+ mirror system (Willingale et al. 2013), by combining a sensitive approx. 40 diameter field of view (baseline; 50 goal) DEPFET detector with a pixel size properly sampling the angular resolution of 5 arc sec on-axis (half energy width).This synthesis makes the WFI a very powerful survey instrument, significantly surpassing currently existing capabilities (Nandra et al. 2013; Aird et al. 2013). In addition, the WFI will provide unprecedented simultaneous high-time resolution and high count rate capabilities for the observation of bright sources with low pile-up and high efficiency. In this paper, we summarize the instrument design, the status of the technology development, and the baseline performance.
149 - Didier Barret 2018
The X-ray Integral Field Unit (X-IFU) is the high resolution X-ray spectrometer of the ESA Athena X-ray observatory. Over a field of view of 5 equivalent diameter, it will deliver X-ray spectra from 0.2 to 12 keV with a spectral resolution of 2.5 eV up to 7 keV on ~5 arcsecond pixels. The X-IFU is based on a large format array of super-conducting molybdenum-gold Transition Edge Sensors cooled at about 90 mK, each coupled with an absorber made of gold and bismuth with a pitch of 249 microns. A cryogenic anti-coincidence detector located underneath the prime TES array enables the non X-ray background to be reduced. A bath temperature of about 50 mK is obtained by a series of mechanical coolers combining 15K Pulse Tubes, 4K and 2K Joule-Thomson coolers which pre-cool a sub Kelvin cooler made of a 3He sorption cooler coupled with an Adiabatic Demagnetization Refrigerator. Frequency domain multiplexing enables to read out 40 pixels in one single channel. A photon interacting with an absorber leads to a current pulse, amplified by the readout electronics and whose shape is reconstructed on board to recover its energy with high accuracy. The defocusing capability offered by the Athena movable mirror assembly enables the X-IFU to observe the brightest X-ray sources of the sky (up to Crab-like intensities) by spreading the telescope point spread function over hundreds of pixels. Thus the X-IFU delivers low pile-up, high throughput (>50%), and typically 10 eV spectral resolution at 1 Crab intensities, i.e. a factor of 10 or more better than Silicon based X-ray detectors. In this paper, the current X-IFU baseline is presented, together with an assessment of its anticipated performance in terms of spectral resolution, background, and count rate capability. The X-IFU baseline configuration will be subject to a preliminary requirement review that is scheduled at the end of 2018.
X-ray spectroscopy is key to address the theme of The Hot Universe, the still poorly understood astrophysical processes driving the cosmological evolution of the baryonic hot gas traceable through its electromagnetic radiation. Two future X-ray observatories: the JAXA-led XRISM (due to launch in the early 2020s), and the ESA Cosmic Vision L-class mission Athena (early 2030s) will provide breakthroughs in our understanding of how and when large-scale hot gas structures formed in the Universe, and in tracking their evolution from the formation epoch to the present day.
A method for implementing cylindrical coordinates in the Athena magnetohydrodynamics (MHD) code is described. The extension follows the approach of Athenas original developers and has been designed to alter the existing Cartesian-coordinates code as minimally and transparently as possible. The numerical equations in cylindrical coordinates are formulated to maintain consistency with constrained transport, a central feature of the Athena algorithm, while making use of previously implemented code modules such as the Riemann solvers. Angular-momentum transport, which is critical in astrophysical disk systems dominated by rotation, is treated carefully. We describe modifications for cylindrical coordinates of the higher-order spatial reconstruction and characteristic evolution steps as well as the finite-volume and constrained transport updates. Finally, we present a test suite of standard and novel problems in one-, two-, and three-dimensions designed to validate our algorithms and implementation and to be of use to other code developers. The code is suitable for use in a wide variety of astrophysical applications and is freely available for download on the web.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا