Stable, predictable and training-free operation of superconducting Bi-2212 Rutherford cable racetrack coils at the very high wire current density of more than 1000 A/mm2


Abstract in English

High-temperature superconductors (HTS) could enable high-field magnets much stronger than is possible with Nb-Ti and Nb3Sn, but two key limiting factors have so far been the difficulty of achieving high critical current density in long-length conductors, especially in high-current cables, and the danger of quenches out of the superconducting into the normal state. Here we demonstrate stable, reliable and training-quench-free performance of Bi-2212 racetrack coils wound with a 17-strand Rutherford cable fabricated from wires made with nanospray Bi-2212 powder. These multifilament wires are now being delivered in single lengths of more than 1 km with a new record whole-wire critical current density up to 950 A/mm2 at 30 T at 4.2 K. These coils carried up to 8.6 kA while generating a peak field of 3.5 T at 4.2 K, at a wire current density of 1020 A/mm2. Quite different from the unpredictable training performance of Nb-Ti and Nb3Sn magnets, these Bi-2212 magnets showed no training quenches and entered the flux flow state in a stable manner before thermal runaway and quench occurred. Also quite different from Nb-Ti, Nb3Sn, and REBCO magnets for which localized thermal runaways occur at unpredictable locations, the quenches of Bi-2212 magnets consistently occurred in the high field regions over a conductor length greater than one meter. These characteristics make quench detection rather simple, enabling safe protection, and suggest a new paradigm of constructing quench-predictable superconducting magnets from Bi-2212, which is, like Nb-Ti and Nb3Sn, isotropic, round, multifilament, uniform over km lengths and suitable for Rutherford cable use but, unlike them, much more tolerant of the energy disturbances that often lead Nb-based superconducting magnets to premature quench and long training cycles.

Download