Do you want to publish a course? Click here

A star-forming dwarf galaxy candidate in the halo of NGC 4634

53   0   0.0 ( 0 )
 Added by Yelena Stein
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The halos of disk galaxies form a crucial connection between the galaxy disk and the intergalactic medium. Massive stars, HII regions, or dwarf galaxies located in the halos of galaxies are potential tracers of recent accretion and/or outflows of gas, and are additional contributors to the photon field and the gas phase metallicity. We investigate the nature and origin of a star-forming dwarf galaxy candidate located in the halo of the edge-on Virgo galaxy NGC 4634 with a projected distance of 1.4 kpc and a H$alpha$ star formation rate of $sim 4.7 times 10^{-3} text{M}_odot text{yr}^{-1}$ in order to increase our understanding of these disk-halo processes. With optical long-slit spectra we measured fluxes of optical nebula emission lines to derive the oxygen abundance 12 + log(O/H) of an HII region in the disk of NGC 4634 and in the star-forming dwarf galaxy candidate. Abundances derived from optical long-slit data and from Hubble Space Telescope (HST) r-band data, H$alpha$ data, Giant Metrewave Radio Telescope (GMRT) HI data, and photometry of SDSS and GALEX data were used for further analysis. With additional probes of the luminosity-metallicity relation in the $B$-band from the H$alpha$-luminosity, the HI map, and the relative velocities, we are able to constrain a possible origin of the dwarf galaxy candidate. The high oxygen abundance (12 + log(O/H) $approx$ 8.72) of the dwarf galaxy candidate leads to the conclusion that it was formed from pre-enriched material. Analysis of auxiliary data shows that the dwarf galaxy candidate is composed of material originating from NGC 4634. We cannot determine whether this material has been ejected tidally or through other processes, which makes the system highly interesting for follow up observations.



rate research

Read More

We report the discovery of a UV-bright tidal dwarf galaxy candidate in the NGC 4631/4656 galaxy group, which we designate NGC 4656UV. Using survey and archival data spanning from 1.4 GHz to the ultraviolet we investigate the gas kinematics and stellar properties of this system. The HI morphologies of NGC 4656UV and its parent galaxy NGC 4656 are extremely disturbed, with significant amounts of counterrotating and extraplanar gas. From UV-FIR photometry, computed using a new method to correct for surface gradients on faint objects, we find that NGC 4656UV has no significant dust opacity and a blue spectral energy distribution. We compute a star formation rate of 0.027 M_sun yr^-1 from the FUV flux and measure a total HI mass of 3.8x10^8 M_sun for the object. Evolutionary synthesis modeling indicates that NGC 4656UV is a low metallicity system whose only major burst of star formation occurred within the last ~260-290 Myr. The age of the stellar population is consistent with a rough timescale for a recent tidal interaction between NGC 4656 and NGC 4631, although we discuss the true nature of the object--whether it is tidal or pre-existing in origin--in the context of its metallicity being a factor of ten lower than its parent galaxy. We estimate that NGC 4656UV is either marginally bound or unbound. If bound, it contains relatively low amounts of dark matter. The abundance of archival data allows for a deeper investigation into this dynamic system than is currently possible for most TDG candidates.
61 - Ana Monreal-Ibero (1 , 2 , 3 2017
ABRIGED: Quantifying the number, type and distribution of W-R stars is a key component in the context of galaxy evolution, since they put constraints on the age of the star formation bursts. Nearby galaxies (d<5 Mpc) are particularly relevant in this context since they fill the gap between studies in the Local Group, where individual stars can be resolved, and galaxies in the Local Volume and beyond. We intend to characterize the W-R star population in NGC625, a low-metallicity dwarf galaxy suffering a currently declining burst of star formation. Optical IFS data have been obtained with the VIMOS-IFU covering the starburst region. We estimate the number of W-R stars using a linear combination of 3 W-R templates: 1 early-type nitrogen (WN) star, 1 late-type WN star and 1 carbon-type (WC) star (or oxygen-type (WO) star). Fits using several ensembles of templates were tested. Results were confronted with: i) high spatial resolution HST photometry; ii) numbers of W-R stars in nearby galaxies; iii) model predictions. The W-R star population is spread over the main body of the galaxy, not necessarily coincident with the overall stellar distribution. Our best estimation for the number of W-R stars yields a total of 28 W-R stars in the galaxy, out of which 17 are early- type WN, 6 are late-type WN and 5 are WC stars. The width of the stellar features nicely correlates with the dominant W-R type found in each aperture. The distribution of the different types of WR in the galaxy is roughly compatible with the way star formation has propagated in the galaxy, according to previous findings using HST images. Fits using templates at the metallicity of the LMC yield more reasonable number of W-R than those using templates at the metallicity of the SMC. Given the metallicity of NGC 625, this suggests a non-linear relation between the metallicity and the luminosity of the W-R spectral features.
277 - Y. I. Izotov 2017
We report the discovery of the most metal-poor dwarf star-forming galaxy (SFG) known to date, J0811+4730. This galaxy, at a redshift z=0.04444, has a Sloan Digital Sky Survey (SDSS) g-band absolute magnitude M_g = -15.41 mag. It was selected by inspecting the spectroscopic data base in the Data Release 13 (DR13) of the SDSS. LBT/MODS spectroscopic observations reveal its oxygen abundance to be 12 + log O/H = 6.98 +/- 0.02, the lowest ever observed for a SFG. J0811+4730 strongly deviates from the main-sequence defined by SFGs in the emission-line diagnostic diagrams and the metallicity - luminosity diagram. These differences are caused mainly by the extremely low oxygen abundance in J0811$+$4730, which is ~10 times lower than that in main-sequence SFGs with similar luminosities. By fitting the spectral energy distributions of the SDSS and LBT spectra, we derive a stellar mass of M* = 10^6.24 - 10^6.29 Msun (statistical uncertainties only), and we find that a considerable fraction of the galaxy stellar mass was formed during the most recent burst of star formation.
175 - Nils Bergvall 2011
Star forming dwarf galaxies (SFDGs) have a high gas content and low metallicities, reminiscent of the basic entities in hierarchical galaxy formation scenarios. In the young universe they probably also played a major role in the cosmic reionization. Their abundant presence in the local volume and their youthful character make them ideal objects for detailed studies of the initial stellar mass function (IMF), fundamental star formation processes and its feedback to the interstellar medium. Occasionally we witness SFDGs involved in extreme starbursts, giving rise to strongly elevated production of super star clusters and global superwinds, mechanisms yet to be explored in more detail. SFDGs is the initial state of all dwarf galaxies and the relation to the environment provides us with a key to how different types of dwarf galaxies are emerging. In this review we will put the emphasis on the exotic starburst phase, as it seems less important for present day galaxy evolution but perhaps fundamental in the initial phase of galaxy formation.
We present new HI spectral line images of the nearby low-mass galaxy NGC 5238, acquired with the Karl G. Jansky Very Large Array (VLA). Located at a distance of 4.51+/-0.04 Mpc, NGC 5238 is an actively star-forming galaxy with widespread H-alpha and UV continuum emission. The source is included in many ongoing and recent nearby galaxy surveys, but until this work the spatially resolved qualities of its neutral interstellar medium have remained unstudied. Our HI images resolve the disk on physical scales of ~400 pc, allowing us to undertake a detailed comparative study of the gaseous and stellar components. The HI disk is asymmetric in the outer regions, and the areas of high HI mass surface density display a crescent-shaped morphology that is slightly offset from the center of the stellar populations. The HI column density exceeds 10^21 cm^-2 in much of the disk. We quantify the degree of co-spatiality of dense HI gas and sites of ongoing star formation as traced by far-UV and H-alpha emission. The neutral gas kinematics are complex; using a spatially-resolved position-velocity analysis, we infer a rotational velocity of 31+/-5 km/s. We place NGC 5238 on the baryonic Tully-Fisher relation and contextualize the system amongst other low-mass galaxies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا