Do you want to publish a course? Click here

Astrocyte-induced positive integrated information in neuroglial ensembles

161   0   0.0 ( 0 )
 Added by Oleg Kanakov
 Publication date 2018
  fields Biology
and research's language is English




Ask ChatGPT about the research

The Integrated Information is a quantitative measure from information theory how tightly all parts of a system are interconnected in terms of information exchange. In this study we show that astrocyte, playing an important role in regulation of information transmission between neurons, may contribute to a generation of positive Integrated Information in neuronal ensembles. Analytically and numerically we show that the presence of astrocyte may be essential for this information attribute in neuro-astrocytic ensembles. Moreover, the proposed spiking-bursting mechanism of generating positive Integrated Information is shown to be generic and not limited to neuroglial networks, and is given a complete analytic description.



rate research

Read More

Most information dynamics and statistical causal analysis frameworks rely on the common intuition that causal interactions are intrinsically pairwise -- every cause variable has an associated effect variable, so that a causal arrow can be drawn between them. However, analyses that depict interdependencies as directed graphs fail to discriminate the rich variety of modes of information flow that can coexist within a system. This, in turn, creates problems with attempts to operationalise the concepts of dynamical complexity or `integrated information. To address this shortcoming, we combine concepts of partial information decomposition and integrated information, and obtain what we call Integrated Information Decomposition, or $Phi$ID. We show how $Phi$ID paves the way for more detailed analyses of interdependencies in multivariate time series, and sheds light on collective modes of information dynamics that have not been reported before. Additionally, $Phi$ID reveals that what is typically referred to as integration is actually an aggregate of several heterogeneous phenomena. Furthermore, $Phi$ID can be used to formulate new, tailored measures of integrated information, as well as to understand and alleviate the limitations of existing measures.
This study presents a comprehensive analytic description in terms of the empirical whole minus sum version of Integrated Information in comparison to the decoder based version for the spiking-bursting discrete-time, discrete-state stochastic model, which was recently introduced to describe a specific type of dynamics in a neuron-astrocyte network. The whole minus sum information may change sign, and an interpretation of this transition in terms of net synergy is available in the literature. This motivates our particular interest to the sign of the whole minus sum information in our analytical consideration. The behavior of the whole minus sum and decoder based information measures are found to bear a lot of similarity, showing their mutual asymptotic convergence as time-uncorrelated activity is increased, with the sign transition of the whole minus sum information associated to a rapid growth in the decoder based information. The study aims at creating a theoretical base for using the spiking-bursting model as a well understood reference point for applying Integrated Information concepts to systems exhibiting similar bursting behavior (in particular, to neuron-astrocyte networks). The model can also be of interest as a new discrete-state test bench for different formulations of Integrated Information.
The ability to integrate information in the brain is considered to be an essential property for cognition and consciousness. Integrated Information Theory (IIT) hypothesizes that the amount of integrated information ($Phi$) in the brain is related to the level of consciousness. IIT proposes that to quantify information integration in a system as a whole, integrated information should be measured across the partition of the system at which information loss caused by partitioning is minimized, called the Minimum Information Partition (MIP). The computational cost for exhaustively searching for the MIP grows exponentially with system size, making it difficult to apply IIT to real neural data. It has been previously shown that if a measure of $Phi$ satisfies a mathematical property, submodularity, the MIP can be found in a polynomial order by an optimization algorithm. However, although the first version of $Phi$ is submodular, the lat
341 - Carlotta Langer , Nihat Ay 2021
The Integrated Information Theory provides a quantitative approach to consciousness and can be applied to neural networks. An embodied agent controlled by such a network influences and is being influenced by its environment. This involves, on the one hand, morphological computation within goal directed action and, on the other hand, integrated information within the controller, the agents brain. In this article, we combine different methods in order to examine the information flows among and within the body, the brain and the environment of an agent. This allows us to relate various information flows to each other. We test this framework in a simple experimental setup. There, we calculate the optimal policy for goal-directed behavior based on the planning as inference method, in which the information-geometric em-algorithm is used to optimize the likelihood of the goal. Morphological computation and integrated information are then calculated with respect to the optimal policies. Comparing the dynamics of these measures under changing morphological circumstances highlights the antagonistic relationship between these two concepts. The more morphological computation is involved, the less information integration within the brain is required. In order to determine the influence of the brain on the behavior of the agent it is necessary to additionally measure the information flow to and from the brain.
A new paradigm has recently emerged in brain science whereby communications between glial cells and neuron-glia interactions should be considered together with neurons and their networks to understand higher brain functions. In particular, astrocytes, the main type of glial cells in the cortex, have been shown to communicate with neurons and with each other. They are thought to form a gap-junction-coupled syncytium supporting cell-cell communication via propagating Ca2+ waves. An identified mode of propagation is based on cytoplasm-to-cytoplasm transport of inositol trisphosphate (IP3) through gap junctions that locally trigger Ca2+ pulses via IP3-dependent Ca2+-induced Ca2+ release. It is, however, currently unknown whether this intracellular route is able to support the propagation of long-distance regenerative Ca2+ waves or is restricted to short-distance signaling. Furthermore, the influence of the intracellular signaling dynamics on intercellular propagation remains to be understood. In this work, we propose a model of the gap-junctional route for intercellular Ca2+ wave propagation in astrocytes showing that: (1) long-distance regenerative signaling requires nonlinear coupling in the gap junctions, and (2) even with nonlinear gap junctions, long-distance regenerative signaling is favored when the internal Ca2+ dynamics implements frequency modulation-encoding oscillations with pulsating dynamics, while amplitude modulation-encoding dynamics tends to restrict the propagation range. As a result, spatially heterogeneous molecular properties and/or weak couplings are shown to give rise to rich spatiotemporal dynamics that support complex propagation behaviors. These results shed new light on the mechanisms implicated in the propagation of Ca2+ waves across astrocytes and precise the conditions under which glial cells may participate in information processing in the brain.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا