No Arabic abstract
We report on a theoretical study of collective electronic excitations in single-layer antimony crystals (antimonene), a novel two-dimensional semiconductor with strong spin-orbit coupling. Based on a tight-binding model, we consider electron-doped antimonene and demonstrate that the combination of spin-orbit effects with external bias gives rise to peculiar plasmon excitations in the mid-infrared spectral range. These excitations are characterized by low losses and negative dispersion at frequencies effectively tunable by doping and bias voltage. The observed behavior is attributed to the spin-splitting of the conduction band, which induces interband resonances, affecting the collective excitations. Our findings open up the possibility to develop plasmonic and optoelectronic devices with high tunability, operating in a technologically relevant spectral range.
A clear gate voltage tunable weak antilocalization and a giant magnetoresistance of 400 percent are observed at 1.9 K in single layer graphene with an out-of-plane field. A large magnetoresistance value of 275 percent is obtained even at room temperature implying potential applications of graphene in magnetic sensors. Both the weak antilocalization and giant magnetoresistance persists far away from the charge neutrality point in contrast to previous reports, and both effects are originated from charged impurities. Interestingly, the signatures of Shubnikov-de Haas oscillations and the quantum Hall effect are also observed for the same sample.
Surface plasmons are collective oscillations of electrons in metals or semiconductors enabling confinement and control of electromagnetic energy at subwavelength scales. Rapid progress in plasmonics has largely relied on advances in device nano-fabrication, whereas less attention has been paid to the tunable properties of plasmonic media. One such medium-graphene-is amenable to convenient tuning of its electronic and optical properties with gate voltage. Through infrared nano-imaging we explicitly show that common graphene/SiO2/Si back-gated structures support propagating surface plasmons. The wavelength of graphene plasmons is of the order of 200 nm at technologically relevant infrared frequencies, and they can propagate several times this distance. We have succeeded in altering both the amplitude and wavelength of these plasmons by gate voltage. We investigated losses in graphene using plasmon interferometry: by exploring real space profiles of plasmon standing waves formed between the tip of our nano-probe and edges of the samples. Plasmon dissipation quantified through this analysis is linked to the exotic electrodynamics of graphene. Standard plasmonic figures of merits of our tunable graphene devices surpass that of common metal-based structures.
We report the observation and gate manipulation of intrinsic dark trions in monolayer WSe$_2$. By using ultraclean WSe$_2$ devices encapsulated by boron nitride, we directly resolve the weak photoluminescence of dark trions. The dark trions can be tuned continuously between negative and positive charged trions with electrostatic gating. We also reveal their spin triplet configuration and distinct valley optical emission by their characteristic Zeeman splitting under magnetic field. The dark trions exhibit large binding energy (14-16 meV). Their lifetime (~1.3 ns) is two orders of magnitude longer than the bright trion lifetime (~10 ps) and can be tuned between 0.4 to 1.3 ns by electrostatic gating. Such robust, optically detectable, and gate tunable dark trions provide a new path to realize electrically controllable trion transport in two-dimensional materials.
We show that hole states in recently discovered single-layer InSe are strongly renormalized by the coupling with acoustic phonons. The coupling is enhanced significantly at moderate hole doping ($sim$10$^{13}$ cm$^{-2}$) due to hexagonal warping of the Fermi surface. While the system remains dynamically stable, its electron-phonon spectral function exhibits sharp low-energy resonances, leading to the formation of satellite quasiparticle states near the Fermi energy. Such many-body renormalization is predicted to have two important consequences. First, it significantly suppresses charge carrier mobility reaching $sim$1 cm$^2$V$^{-1}$s$^{-1}$ at $100$ K in a freestanding sample. Second, it gives rise to unusual temperature-dependent optical excitations in the midinfrared region. Relatively small charge carrier concentrations and realistic temperatures suggest that these excitations may be observed experimentally.
Topological materials bear gapped excitations in bulk yet protected gapless excitations at boundaries. Magnetoplasmons (MPs), as high-frequency density excitations of two-dimensional electron gas (2DEG) in a perpendicular magnetic field, embody a prototype of band topology for bosons. The time-reversal-breaking magnetic field opens a topological gap for bulk MPs up to the cyclotron frequency; topologically-protected edge magnetoplasmons (EMPs) bridge the bulk gap and propagate unidirectionally along systems boundaries. However, all the EMPs known to date adhere to physical edges where the electron density terminates abruptly. This restriction has made device application extremely difficult. Here we demonstrate a new class of topological edge plasmons -- domain-boundary magnetoplasmons (DBMPs), within a uniform edgeless 2DEG. Such DBMPs arise at the domain boundaries of an engineered sign-changing magnetic field and are protected by the difference of gap Chern numbers (+/-1) across the magnetic domains. They propagate unidirectionally along the domain boundaries and are immune to domain defects. Moreover, they exhibit wide tunability in the microwave frequency range under an applied magnetic field or gate voltage. Our study opens a new direction to realize high-speed reconfigurable topological devices.