Do you want to publish a course? Click here

Measurement of the differential cross sections for $W$-boson production in association with jets in $pbar{p}$ collisions at $sqrt{s}=1.96$ TeV

159   0   0.0 ( 0 )
 Added by Anna Driutti
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

This paper presents a study of the production of a single $W$ boson in association with one or more jets in proton-antiproton collisions at $sqrt{s}=1.96$ TeV, using the entire data set collected in 2001-2011 by the Collider Detector at Fermilab at the Tevatron, which corresponds to an integrated luminosity of $9.0$ fb$^{-1}$. The $W$ boson is identified through its leptonic decays into electron and muon. The production cross sections are measured for each leptonic decay mode and combined after testing that the ratio of the $W(rightarrow mu u)+$jets cross section to the $W(rightarrow e u)+$jets cross section agrees with the hypothesis of $e$-$mu$ lepton universality. The combination of measured cross sections, differential in the inclusive jet multiplicity ($W+geqslant N$ jets with $N=1,,2,,3, textrm{or }4$) and in the transverse energy of the leading jet, are compared with theoretical predictions.



rate research

Read More

We present a measurement of the $W$-boson-pair production cross section in $pbar{p}$ collisions at 1.96 TeV center-of-mass energy and the first measurement of the differential cross section as a function of jet multiplicity and leading-jet energy. The $W^{+}W^{-}$ cross section is measured in the final state comprising two charged leptons and neutrinos, where either charged lepton can be an electron or a muon. Using data collected by the CDF experiment corresponding to $9.7~rm{fb}^{-1}$ of integrated luminosity, a total of $3027$ collision events consistent with $W^{+}W^{-}$ production are observed with an estimated background contribution of $1790pm190$ events. The measured total cross section is $sigma(pbar{p} rightarrow W^{+}W^{-}) = 14.0 pm 0.6~(rm{stat})^{+1.2}_{-1.0}~(rm{syst})pm0.8~(rm{lumi})$ pb, consistent with the standard model prediction.
Differential cross sections for the production of $Z$ bosons or off-shell photons $gamma^*$ in association with jets are measured in proton-antiproton collisions at center-of-mass energy $sqrt{s}=1.96$ TeV using the full data set collected with the Collider Detector at Fermilab in Tevatron Run II, and corresponding to 9.6 fb$^{-1}$ of integrated luminosity. Results include first measurements at CDF of differential cross sections in events with a $Z/gamma^*$ boson and three or more jets, the inclusive cross section for production of $Z/gamma^*$ and four or more jets, and cross sections as functions of various angular observables in lower jet-multiplicity final states. Measured cross sections are compared to several theoretical predictions.
A measurement of the $bjet$ production cross section is presented for events containing a $Z$ boson produced in $pbar{p}$ collisions at $sqrt{s}=1.96$ TeV, using data corresponding to an integrated luminosity of 2 fb$^{-1}$ collected by the CDF II detector at the Tevatron. $Z$ bosons are selected in the electron and muon decay modes. Jets are considered with transverse energy $E_T>20$ GeV and pseudorapidity $|eta|<1.5$ and are identified as $bjets$ using a secondary vertex algorithm. The ratio of the integrated $Z+bjet$ cross section to the inclusive $Z$ production cross section is measured to be $3.32 pm 0.53 {rm (stat.)} pm 0.42 {rm (syst.)}times 10^{-3}$. This ratio is also measured differentially in jet $E_T$, jet $eta$, $Z$-boson transverse momentum, number of jets, and number of $bjets$. The predictions from leading order Monte Carlo generators and next-to-leading-order QCD calculations are found to be consistent with the measurements within experimental and theoretical uncertainties.
We describe a measurement of the ratio of the cross sections times branching fractions of the $B_c^+$ meson in the decay mode $B_c^+ rightarrow J/psi mu u$ to the $B^+$ meson in the decay mode $B^+ rightarrow J/psi K^+$ in proton-antiproton collisions at center-of-mass energy $sqrt{s}=1.96$ TeV. The measurement is based on the complete CDF Run II data set, which comes from an integrated luminosity of $8.7,{rm fb}^{-1}$. The ratio of the production cross sections times branching fractions for $B_c^+$ and $B_c^+$ mesons with momentum transverse to the beam greater than $6~textrm{GeV}/c$ and rapidity magnitude smaller than 0.6 is $0.211pm 0.012~mbox{(stat)}^{+0.021}_{-0.020}~mbox{(syst)}$. Using the known $B^+ rightarrow J/psi K^+$ branching fraction, the known $B^+$ production cross section, and a selection of the predicted $B_c^+ rightarrow J/psi mu u$ branching fractions, the range for the total $B_c^+$ production cross section is estimated.
We present a measurement of the inclusive jet cross section using the Run II cone algorithm and data collected by the D0 experiment in p pbar collisions at a center-of-mass energy sqrt(s)=1.96 TeV, corresponding to an integrated luminosity of 0.70 fb^(-1). The jet energy calibration and the method used to extract the inclusive jet cross section are described. We discuss the main uncertainties, which are dominated by the jet energy scale uncertainty. The results cover jet transverse momenta from 50 GeV to 600 GeV with jet rapidities in the range -2.4 to 2.4 and are compared to predictions using recent proton parton distribution functions. Studies of correlations between systematic uncertainties in transverse momentum and rapidity are presented.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا