Allocations of Cold Standbys to Series and Parallel Systems with Dependent Components


Abstract in English

In the context of industrial engineering, cold-standby redundancies allocation strategy is usually adopted to improve the reliability of coherent systems. This paper investigates optimal allocation strategies of cold standbys for series and parallel systems comprised of dependent components with left/right tail weakly stochastic arrangement increasing lifetimes. For the case of heterogeneous and independent matched cold standbys, it is proved that better redundancies should be put in the nodes having weaker [better] components for series [parallel] systems. For the case of homogeneous and independent cold standbys, it is shown that more redundancies should be put in standby with weaker [better] components to enhance the reliability of series [parallel] systems. The results developed here generalize and extend those corresponding ones in the literature to the case of series and parallel systems with dependent components. Numerical examples are also presented to provide guidance for the practical use of our theoretical findings.

Download