No Arabic abstract
We introduce a variant of the Hybrid Monte Carlo (HMC) algorithm to address large-deviation statistics in stochastic hydrodynamics. Based on the path-integral approach to stochastic (partial) differential equations, our HMC algorithm samples space-time histories of the dynamical degrees of freedom under the influence of random noise. First, we validate and benchmark the HMC algorithm by reproducing multiscale properties of the one-dimensional Burgers equation driven by Gaussian and white-in-time noise. Second, we show how to implement an importance sampling protocol to significantly enhance, by orders of magnitudes, the probability to sample extreme and rare events, making it possible to estimate moments of field variables of extremely high order (up to 30 and more). By employing reweighting techniques, we map the biased configurations back to the original probability measure in order to probe their statistical importance. Finally, we show that by biasing the system towards very intense negative gradients, the HMC algorithm is able to explore the statistical fluctuations around instanton configurations. Our results will also be interesting and relevant in lattice gauge theory since they provide insight into reweighting techniques.
We present a new method for sampling rare and large fluctuations in a non-equilibrium system governed by a stochastic partial differential equation (SPDE) with additive forcing. To this end, we deploy the so-called instanton formalism that corresponds to a saddle-point approximation of the action in the path integral formulation of the underlying SPDE. The crucial step in our approach is the formulation of an alternative SPDE that incorporates knowledge of the instanton solution such that we are able to constrain the dynamical evolutions around extreme flow configurations only. Finally, a reweighting procedure based on the Girsanov theorem is applied to recover the full distribution function of the original system. The entire procedure is demonstrated on the example of the one-dimensional Burgers equation. Furthermore, we compare our method to conventional direct numerical simulations as well as to Hybrid Monte Carlo methods. It will be shown that the instanton-based sampling method outperforms both approaches and allows for an accurate quantification of the whole probability density function of velocity gradients from the core to the very far tails.
Using the Ehrenfest urn model we illustrate the subtleties of error estimation in Monte Carlo simulations. We discuss how the smooth results of correlated sampling in Markov chains can fool ones perception of the accuracy of the data, and show (via numerical and analytical methods) how to obtain reliable error estimates from correlated samples.
Parallel tempering Monte Carlo has proven to be an efficient method in optimization and sampling applications. Having an optimized temperature set enhances the efficiency of the algorithm through more-frequent replica visits to the temperature limits. The approaches for finding an optimal temperature set can be divided into two main categories. The methods of the first category distribute the replicas such that the swapping ratio between neighbouring replicas is constant and independent of the temperature values. The second-category techniques including the feedback-optimized method, on the other hand, aim for a temperature distribution that has higher density at simulation bottlenecks, resulting in temperature-dependent replica-exchange probabilities. In this paper, we compare the performance of various temperature setting methods on both sparse and fully-connected spin-glass problems as well as fully-connected Wishart problems that have planted solutions. These include two classes of problems that have either continuous or discontinuous phase transitions in the order parameter. Our results demonstrate that there is no performance advantage for the methods that promote nonuniform swapping probabilities on spin-glass problems where the order parameter has a smooth transition between phases at the critical temperature. However, on Wishart problems that have a first-order phase transition at low temperatures, the feedback-optimized method exhibits a time-to-solution speedup of at least a factor of two over the other approaches.
The bifurcation method is a way to do rare event sampling -- to estimate the probability of events that are too rare to be found by direct simulation. We describe the bifurcation method and use it to estimate the transition rate of a double well potential problem. We show that the associated constrained path sampling problem can be addressed by a combination of Crooks-Chandler sampling and parallel tempering and marginalization.
Molecular dynamics is one of the most commonly used approaches for studying the dynamics and statistical distributions of many physical, chemical, and biological systems using atomistic or coarse-grained models. It is often the case, however, that the interparticle forces drive motion on many time scales, and the efficiency of a calculation is limited by the choice of time step, which must be sufficiently small that the fastest force components are accurately integrated. Multiple time-stepping algorithms partially alleviate this inefficiency by assigning to each time scale an appropriately chosen step-size. However, such approaches are limited by resonance phenomena, wherein motion on the fastest time scales limits the step sizes associated with slower time scales. In atomistic models of biomolecular systems, for example, resonances limit the largest time step to around 5-6 fs. In this paper, we introduce a set of stochastic isokinetic equations of motion that are shown to be rigorously ergodic and that can be integrated using a multiple time-stepping algorithm that can be easily implemented in existing molecular dynamics codes. The technique is applied to a simple, illustrative problem and then to a more realistic system, namely, a flexible water model. Using this approach outer time steps as large as 100 fs are shown to be possible.