No Arabic abstract
The distinction of chiral and mirror symmetric objects is straightforward from a geometrical point of view. Since the biological as well as the optical activity of molecules strongly depend on their handedness, chirality has recently attracted high interest in the field of nano-optics. Various aspects of associated phenomena including the influences of internal and external degrees of freedom on the optical response have been discussed. Here, we propose a constructive method to evaluate the possibility of observing any chiral response from an optical scatterer. Based on solely the T-matrix of one enantiomer, planes of minimal chiral response are located and compared to geometric mirror planes. This provides insights into the relation of geometric and optical properties and enables identifying the potential of chiral scatterers for nano-optical experiments.
Twisted atomic bilayers are emerging platforms for manipulating chiral light-matter interaction at the extreme nanoscale, due to their inherent magnetoelectric responses induced by the finite twist angle and quantum interlayer coupling between the atomic layers. Recent studies have reported the direct correspondence between twisted atomic bilayers and chiral metasurfaces, which features a chiral surface conductivity, in addition to the electric and magnetic surface conductivities. However, far-field chiral optics in light of these consitututive conductivities remains unexplored. Within the framework of the full Maxwell equations, we find that the chiral surface conductivity can be exploited to realize perfect polarization transformation between linearly polarized light. Remarkably, such an exotic chiral phenomenon can occur either for the reflected or transmitted light.
Quasiclassical approach and geometric optics allow to describe rather accurately whispering gallery modes in convex axisymmetric bodies. Using this approach we obtain practical formulas for the calculation of eigenfrequencies and radiative Q-factors in dielectrical spheroid and compare them with the known solutions for the particular cases and with numerical calculations. We show how geometrical interpretation allows expansion of the method on arbitrary shaped axisymmetric bodies.
Topological photonic structures exhibit chiral edge states that are robust to disorder and sharp bends. When coupled to quantum emitters, these edge states generate directional light emission that enables unprecedented control of interactions between light and matter in a nanophotonic device. While directional light emission in one-dimensional topological, as well as conventional, waveguides has been previously demonstrated, the extension of these concepts to resonator structures that enhance light-matter coupling remains challenging. Here we demonstrate chiral lightmatter interactions in a topological resonator. We employ valley-Hall topological edge states to realize a helical resonator at the interface of two topologically distinct regions. Such a helical resonator has two counter-propagating modes with opposite polarizations. We show chiral coupling of the resonator to a quantum emitter resulting in a Purcell enhancement of 3.4 due to resonant coupling. Such chiral resonators could enable designing complex nanophotonic circuits for quantum information processing, and studying novel quantum many-body dynamics.
It is standard practice to study the lensing of gravitational waves (GW) using the geometric optics regime. However, in many astrophysical configurations this regime breaks down as the wavelength becomes comparable to the Schwarzschild radius of the lens. We revisit the lensing of GW including corrections beyond geometric optics. We propose a perturbative method for calculating these corrections simply solving first order decoupled differential equations. We study the behavior of a single ray and find that the polarization plane defined in geometric optics is smeared due to diffraction effects, which leads to the rise of apparent vector and scalar polarization modes. We analyze how these modes depend on the observer choice, and we study the impact of diffraction on the pseudo-stress energy momentum tensor of the gravitational field.
The utilization of time reversal symmetry in designing and implementing (quantum) optical experiments has become more and more frequent over the past years. We review the basic idea underlying time reversal methods, illustrate it with several examples and discuss a number of implications.