Do you want to publish a course? Click here

Initial results on energy resolution of the NEXT-White detector

85   0   0.0 ( 0 )
 Added by Joshua Renner
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

One of the major goals of the NEXT-White (NEW) detector is to demonstrate the energy resolution that an electroluminescent high pressure xenon TPC can achieve for high energy tracks. For this purpose, energy calibrations with 137Cs and 232Th sources have been carried out as a part of the long run taken with the detector during most of 2017. This paper describes the initial results obtained with those calibrations, showing excellent linearity and an energy resolution that extrapolates to approximately 1% FWHM at Q$_{betabeta}$.



rate research

Read More

Excellent energy resolution is one of the primary advantages of electroluminescent high pressure xenon TPCs, and searches for rare physics events such as neutrinoless double-beta decay ($betabeta0 u$) require precise energy measurements. Using the NEXT-White detector, developed by the NEXT (Neutrino Experiment with a Xenon TPC) collaboration, we show for the first time that an energy resolution of 1% FWHM can be achieved at 2.6 MeV, establishing the present technology as the one with the best energy resolution of all xenon detectors for $betabeta0 u$ searches.
Conceived to host 5 kg of xenon at a pressure of 15 bar in the fiducial volume, the NEXT- White (NEW) apparatus is currently the largest high pressure xenon gas TPC using electroluminescent amplification in the world. It is also a 1:2 scale model of the NEXT-100 detector scheduled to start searching for $betabeta 0 u$ decays in 136Xe in 2019. Both detectors measure the energy of the event using a plane of photomultipliers located behind a transparent cathode. They can also reconstruct the trajectories of charged tracks in the dense gas of the TPC with the help of a plane of silicon photomultipliers located behind the anode. A sophisticated gas system, common to both detectors, allows the high gas purity needed to guarantee a long electron lifetime. NEXT-White has been operating since October 2017 at the Canfranc Underground Laboratory (LSC), in Spain. This paper describes the detector and associated infrastructures.
NEXT-DEMO is a large-scale prototype of the NEXT-100 detector, an electroluminescent time projection chamber that will search for the neutrinoless double beta decay of Xe-136 using 100 to 150 kg of enriched xenon gas. NEXT-DEMO was built to prove the expected performance of NEXT-100, namely, energy resolution better than 1% FWHM at 2.5 MeV and event topological reconstruction. In this paper we describe the prototype and its initial results. A resolution of 1.75% FWHM at 511 keV (which extrapolates to 0.8% FWHM at 2.5 MeV) was obtained at 10 bar pressure using a gamma-ray calibration source. Also, a basic study of the event topology along the longitudinal coordinate is presented, proving that it is possible to identify the distinct dE/dx of electron tracks in high-pressure xenon using an electroluminescence TPC.
In experiments searching for neutrinoless double-beta decay, the possibility of identifying the two emitted electrons is a powerful tool in rejecting background events and therefore improving the overall sensitivity of the experiment. In this paper we present the first measurement of the efficiency of a cut based on the different event signatures of double and single electron tracks, using the data of the NEXT-White detector, the first detector of the NEXT experiment operating underground. Using a TO calibration source to produce signal-like and background-like events with energies near 1.6 MeV, a signal efficiency of $71.6 pm 1.5_{textrm{ stat}} pm 0.3_{textrm{ sys}} %$ for a background acceptance of $20.6 pm 0.4_{textrm{ stat}} pm 0.3_{textrm{ sys}} %$ is found, in good agreement with Monte Carlo simulations. An extrapolation to the energy region of the neutrinoless double beta decay by means of Monte Carlo simulations is also carried out, and the results obtained show an improvement in background rejection over those obtained at lower energies.
In a neutrinoless double-beta decay ($0 ubetabeta$) experiment, energy resolution is important to distinguish between $0 ubetabeta$ and background events. CAlcium fluoride for studies of Neutrino and Dark matters by Low Energy Spectrometer (CANDLES) discerns the $0 ubetabeta$ of $^{48}$Ca using a CaF$_2$ scintillator as the detector and source. Photomultiplier tubes (PMTs) collect scintillation photons. At the Q-value of $^{48}$Ca, the current energy resolution (2.6%) exceeds the ideal statistical fluctuation of the number of photoelectrons (1.6%). Because of CaF$_2$s long decay constant of 1000 ns, a signal integration within 4000 ns is used to calculate the energy. The baseline fluctuation ($sigma_{baseline}$) is accumulated in the signal integration, thus degrading the energy resolution. This paper studies $sigma_{baseline}$ in the CANDLES detector, which severely degrades the resolution by 1% at the Q-value of $^{48}$Ca. To avoid $sigma_{rm baseline}$, photon counting can be used to obtain the number of photoelectrons in each PMT; however, a significant photoelectron signal overlapping probability in each PMT causes missing photoelectrons in counting and reduces the energy resolution. Partial photon counting reduces $sigma_{baseline}$ and minimizes photoelectron loss. We obtain improved energy resolutions of 4.5-4.0% at 1460.8 keV ($gamma$-ray of $^{40}$K), and 3.3-2.9% at 2614.5 keV ($gamma$-ray of $^{208}$Tl). The energy resolution at the Q-value is estimated to be improved from 2.6% to 2.2%, and the detector sensitivity for the $0 ubetabeta$ half-life of $^{48}$Ca can be improved by 1.09 times.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا