Do you want to publish a course? Click here

X-ray Luminosity Function of Quasars at 3<z<5 from XMM-Newton Serendipitous Survey Data

63   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The X-ray luminosity function of distant (3<z<5.1) unabsorbed quasars has been measured. A sample of distant high-luminosity quasars ($10^{45} leq L_{{rm X},2-10} < 7.5 times 10^{45}$ erg/s in the 2--10 keV energy band) from the catalog given in Khorunzhev et al. (2016) compiled from the data of the 3XMM-DR4 catalog of the XMM-Newton serendipitous survey and the Sloan Digital Sky Survey (SDSS) has been used. This sample consists of 101 sources. Most of them (90) have spectroscopic redshifts $z_{spec}geqslant 3$. The remaining ones are quasar candidates with photometric redshift estimates $z_{phot}geqslant 3$. The spectroscopic redshifts of eight sources have been measured with AZT-33IK and BTA telescopes. Owing to the record sky coverage area ($simeq 250$ sq. deg at X-ray fluxes $sim 10^{-14}$ erg/s/cm$^{2}$ in the 0.5-2 keV), from which the sample was drawn, we have managed to obtain reliable estimates of the space density of distant X-ray quasars with luminosities $L_{{rm X},2-10} > 2 times 10^{45}$ erg/s for the first time. Their comoving space density remains constant as the redshift increases from z=3 to z=5 to within a factor of 2. The power-law slope of the X-ray luminosity function of high-redshift quasars in its bright end (above the break luminosity) has been reliably constrained for the first time. The range of possible slopes for the quasar luminosity and density evolution model is $gamma_2=2.78^{+0.00}_{-0.04}pm0.20$, where initially the lower and upper boundaries of $gamma_2$ with the remaining uncertainty in the detection completeness of X-ray sources in SDSS, and subsequently the statistical error of the slope are specified.



rate research

Read More

568 - G.A. Khorunzhev 2017
We present the results of optical spectroscopy for 19 quasar candidates at photometric redshifts $zphot gtrsim 3$, Nobs of which enter into the Khorunzhev et al.~(2016) catalog (K16). This is a catalog of quasar candidates and known type 1 quasars selected among the X-ray sources of the textit{3XMM-DR4}catalog of the XMM-Newton serendipitous survey. We have performed spectroscopy for a quasi-random sample of new candidates at the 1.6-m Azt telescope of the Sayan Solar Observatory and the 6-m BTA telescope of the Special Astrophysical Observatory. The spectra at Azt were taken with the new low- and medium-resolution ADAM spectrograph that was produced and installed on the telescope in 2015. Fourteen of the Nobs candidates actually have turned out to be quasars; 10 of them are at spectroscopic redshifts z > 3. The high purity of the sample of new candidates suggests that the purity of the entire K16 catalog of quasars is probably 70--80%. One of the most distant ($zspec=5.08$) optically bright ($i^primelesssim 21$) quasars ever detected in X-ray surveys has been discovered.
339 - G.A. Khorunzhev 2017
We have compiled a catalog of 903 candidates for type 1 quasars at redshifts 3<z<5.5 selected among the X-ray sources of the serendipitous XMM-Newton survey presented in the 3XMM-DR4 catalog (the median X-ray flux is 5x10^{-15} erg/s/cm^2 the 0.5-2 keV energy band) and located at high Galactic latitudes >20 deg in Sloan Digital Sky Survey (SDSS) fields with a total area of about 300 deg^2. Photometric SDSS data as well infrared 2MASS and WISE data were used to select the objects. We selected the point sources from the photometric SDSS catalog with a magnitude error Delta z<0.2 and a color i-z<0.6 (to first eliminate the M-type stars). For the selected sources, we have calculated the dependences chi^2(z) for various spectral templates from the library that we compiled for these purposes using the EAZY software. Based on these data, we have rejected the objects whose spectral energy distributions are better described by the templates of stars at z=0 and obtained a sample of quasars with photometric redshift estimates 2.75<zphot<5.5. The selection completeness of known quasars at z>3 in the investigated fields is shown to be about 80%. The normalized median absolute deviation is 0.07, while the outlier fraction is eta= 9. The number of objects per unit area in our sample exceeds the number of quasars in the spectroscopic SDSS sample at the same redshifts approximately by a factor of 1.5. The subsequent spectroscopic testing of the redshifts of our selected candidates for quasars at 3<z<5.5 will allow the purity of this sample to be estimated more accurately.
We report Chandra detection of three UV bright radio quiet quasars at $zgtrsim5$. We have collected a sufficient number of photons to extract an X-ray spectrum of each quasar to measure their basic X-ray properties, such as the X-ray flux, power law photon index ($Gamma$), and optical-to-X-ray spectral slope ($alpha_{rm OX}$). J074749+115352 at $z=5.26$ is the X-ray brightest radio-quiet quasar at $z>5$. It may have a short timescale variation (on a timescale of $sim3800rm~s$ in the observers frame, or $sim600rm~s$ in the rest frame) which is however largely embedded in the statistical noise. We extract phase folded spectra of this quasar. There are two distinguishable states: a high soft state with an average X-ray flux $sim2.7$ times of the low hard state, and a significantly steeper X-ray spectral slope ($Gamma=2.40_{-0.32}^{+0.33}$ vs $1.78_{-0.24}^{+0.25}$). We also compare the three quasars detected in this paper to other quasar samples. We find that J074749+115352, with a SMBH mass of $M_{rm SMBH}approx1.8times10^9rm~M_odot$ and an Eddington ratio of $lambda_{rm Edd}approx2.3$, is extraordinarily X-ray bright. It has an average $alpha_{rm OX}=-1.46pm0.02$ and a 2-10 keV bolometric correction factor of $L_{rm bol}/L_{rm2-10keV}=42.4pm5.8$, both significantly depart from some well defined scaling relations. We compare $Gamma$ of the three quasars to other samples at different redshifts, and do not find any significant redshift evolution based on the limited sample of $z>5$ quasars with reliable measurements of the X-ray spectral properties.
XMM-Newton has observed the X-ray sky since early 2000. The XMM-Newton Survey Science Centre Consortium has published catalogues of X-ray and ultraviolet sources found serendipitously in the individual observations. This series is now augmented by a catalogue dedicated to X-ray sources detected in spatially overlapping XMM-Newton observations. The aim of this catalogue is to explore repeatedly observed sky regions. It thus makes use of the long(er) effective exposure time per sky area and offers the opportunity to investigate long-term flux variability directly through the source detection process. A new standardised strategy for simultaneous source detection on multiple observations is introduced. It is coded as a new task within the XMM-Newton Science Analysis System and used to compile a catalogue of sources from 434 stacks comprising 1,789 overlapping XMM-Newton observations that entered the 3XMM-DR7 catalogue, have a low background and full-frame readout of all EPIC cameras. The first stacked catalogue is called 3XMM-DR7s. It contains 71,951 unique sources with positions and parameters such as fluxes, hardness ratios, quality estimates, and information on inter-observation variability. About 15% of the sources are new with respect to 3XMM-DR7. Through stacked source detection, the parameters of repeatedly observed sources can be determined with higher accuracy than in the individual observations. The method is more sensitive to faint sources and tends to produce fewer spurious detections. With this first stacked catalogue we demonstrate the feasibility and benefit of the approach. It supplements the large data base of XMM-Newton detections by additional, in particular faint, sources and adds variability information. In the future, the catalogue will be expanded to larger samples and continued within the series of serendipitous XMM-Newton source catalogues.
Thanks to the large collecting area (3 x ~1500 cm$^2$ at 1.5 keV) and wide field of view (30 across in full field mode) of the X-ray cameras on board the European Space Agency X-ray observatory XMM-Newton, each individual pointing can result in the detection of hundreds of X-ray sources, most of which are newly discovered. Recently, many improvements in the XMM-Newton data reduction algorithms have been made. These include enhanced source characterisation and reduced spurious source detections, refined astrometric precision, greater net sensitivity and the extraction of spectra and time series for fainter sources, with better signal-to-noise. Further, almost 50% more observations are in the public domain compared to 2XMMi-DR3, allowing the XMM-Newton Survey Science Centre (XMM-SSC) to produce a much larger and better quality X-ray source catalogue. The XMM-SSC has developed a pipeline to reduce the XMM-Newton data automatically and using improved calibration a new catalogue version has been produced from XMM-Newton data made public by 2013 Dec. 31 (13 years of data). Manual screening ensures the highest data quality. This catalogue is known as 3XMM. In the latest release, 3XMM-DR5, there are 565962 X-ray detections comprising 396910 unique X-ray sources. For the 133000 brightest sources, spectra and lightcurves are provided. For all detections, the positions on the sky, a measure of the quality of the detection, and an evaluation of the X-ray variability is provided, along with the fluxes and count rates in 7 X-ray energy bands, the total 0.2-12 keV band counts, and four hardness ratios. To identify the detections, a cross correlation with 228 catalogues is also provided for each X-ray detection. 3XMM-DR5 is the largest X-ray source catalogue ever produced. Thanks to the large array of data products, it is an excellent resource in which to find new and extreme objects.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا