Controlling the entropic uncertainty lower bound in two-qubit systems under the decoherence


Abstract in English

The uncertainty principle is an inherent characteristic of quantum mechanics. This principle can be formulated in various form. Fundamentally, this principle can be expressed in terms of the standard deviation of the measured observables. In quantum information theory the preferred mathematical quantity to express the entropic uncertainty relation is the Shannons entropy. In this work, we consider the generalized entropic uncertainty relation in which there is an additional particle as a quantum memory. Alice measures on her particle $A$ and Bob, with memory particle $B$, predicts the Alices measurement outcomes. We study the effects of the environment on the entropic uncertainty lower bound in the presence of weak measurement and measurement reversal. The dynamical model that is intended in this work is as follows: First the weak measurement is performed, Second the decoherence affects on the system and at last the measurement reversal is performed on quantum system . Here we consider the generalized amplitude damping channel and depolarizing channel as environmental noises. We will show that in the presence of weak measurement and measurement reversal, despite the presence of environmental factors, the entropic uncertainty lower bound dropped to an optimal minimum value. In fact, weak measurement and measurement reversal enhance the quantum correlation between the subsystems $A$ and $B$ thus the uncertainty of Bob about Alices measurement outcomes reduces.

Download