No Arabic abstract
We study the information entropy, order, disorder, and complexity for the two-dimensional (2D) rotating and nonrotating Bose-Einstein condensates. The choice of our system is a complete theoretical laboratory where the complexity is controlled by the two-body contact interaction strength and the rotation frequency ($Omega$) of the harmonic trap. The 2D nonrotating condensate shows the complexity of the category I where the disorder-order transition is triggered by the interaction strength. In the rotating condensates, $Omega$ is chosen as the disorder parameter when the interaction strength is fixed. With respect to $Omega$, the complexity shifts between the maximum and minimum confirm the existence of category II complexity in the rotating condensate. Also, We consider the interaction strength as the disorder parameter when $Omega$ is unchanged and complexity as a function of interaction strength exhibits category III complexity. The present work also includes the calculation of upper bound and lower bound of entropy for 2D quantum systems.
We investigate the 2D weakly interacting Bose-Einstein condensate in a rotating trap by the tools of quantum information theory. The critical exponents of the ground state fidelity susceptibility and the correlation length of the system are obtained for the quantum phase transition when the frst vortex is formed. We also find the single-particle entanglement can be an indicator of the angular momentums for some real ground states. The single-particle entanglement of fractional quantum Hall states such as Laughlin state and Pfaffian state is also studied.
We introduce the concept of the {em odd-frequency} Bose Einstein Condensate (BEC), characterized by the odd frequency/time two-boson expectation value. To illustrate the concept of odd frequency BEC we present simple classification of pair boson condensates that explicitly permits this state. We point qualitative differences of odd-frequency BEC with conventional BEC and introduce the order parameter and wave function for the odd-frequency BEC.
We classify the ground states and topological defects of a rotating two-component condensate when varying several parameters: the intracomponent coupling strengths, the intercomponent coupling strength and the particle numbers.No restriction is placed on the masses or trapping frequencies of the individual components. We present numerical phase diagrams which show the boundaries between the regions of coexistence, spatial separation and symmetry breaking. Defects such as triangular coreless vortex lattices, square coreless vortex lattices and giant skyrmions are classified. Various aspects of the phase diagrams are analytically justified thanks to a non-linear $sigma$ model that describes the condensate in terms of the total density and a pseudo-spin representation.
In a recent experiment, Kwon et. al (arXiv:1403.4658 [cond-mat.quant-gas]) generated a disordered state of quantum vortices by translating an oblate Bose-Einstein condensate past a laser-induced obstacle and studying the subsequent decay of vortex number. Using mean-field simulations of the Gross-Pitaevskii equation, we shed light on the various stages of the observed dynamics. We find that the flow of the superfluid past the obstacle leads initially to the formation of a classical-like wake, which later becomes disordered. Following removal of the obstacle, the vortex number decays due to vortices annihilating and reaching the boundary. Our results are in excellent agreement with the experimental observations. Furthermore, we probe thermal effects through phenomenological dissipation.
We report the observation of vortex nucleation in a rotating optical lattice. A 87Rb Bose-Einstein condensate was loaded into a static two-dimensional lattice and the rotation frequency of the lattice was then increased from zero. We studied how vortex nucleation depended on optical lattice depth and rotation frequency. For deep lattices above the chemical potential of the condensate we observed a linear dependence of the number of vortices created with the rotation frequency,even below the thermodynamic critical frequency required for vortex nucleation. At these lattice depths the system formed an array of Josephson-coupled condensates. The effective magnetic field produced by rotation introduced characteristic relative phases between neighbouring condensates, such that vortices were observed upon ramping down the lattice depth and recombining the condensates.