Do you want to publish a course? Click here

Redshift Space Distortion of 21cm line at 1<z<5 with Cosmological Hydrodynamic Simulations

333   0   0.0 ( 0 )
 Added by Rika Ando
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We measure the scale dependence and redshift dependence of 21 cm line emitted from the neutral hydrogen gas at redshift 1<z<5 using full cosmological hydrodynamic simulations by taking the ratios between the power spectra of HI-dark matter cross correlation and dark matter auto-correlation. The neutral hydrogen distribution is computed in full cosmological hydrodynamic simulations including star formation and supernova feedback under a uniform ultra-violet background radiation. We find a significant scale dependence of HI bias at z>3 on scales of k>1h/Mpc, but it is roughly constant at lower redshift z<3. The redshift evolution of HI bias is relatively slow compared to that of QSOs at similar redshift range. We also measure a redshift space distortion (RSD) of HI gas to explore the properties of HI clustering. Fitting to a widely applied theoretical prediction, we find that the constant bias is consistent with that measured directly from the real-space power spectra, and the velocity dispersion is marginally consistent with the linear perturbation prediction. Finally we compare the results obtained from our simulation and the Illustris simulation, and conclude that the detailed astrophysical effects do not affect the scale dependence of HI bias very much, which implies that the cosmological analysis using 21 cm line of HI will be robust against the uncertainties arising from small-scale astrophysical processes such as star formation and supernova feedback.

rate research

Read More

109 - Renyue Cen 2016
Utilizing high-resolution cosmological hydrodynamic simulations we investigate various ultra-violet absorption lines in the circumgalactic medium of star forming galaxies at low redshift, in hopes of checking and alleviating the claimed observational conundrum of the ratio of NV to OVI absorbers, among others. We find a satisfactory agreement between simulations and extant observational data with respect to the ratios of the following four line pairs examined, NV/OVI, SiIV/OVI, NIII/OVI and NII/OVI. For the pairs involving nitrogen lines, we examine two cases of nitrogen abundance, one with constant N/O ratio and the other with varying N/O ratio, with the latter motivated by theoretical considerations of two different synthetic sources of nitrogen that is empirically verified independently. Along a separate vector, for all line pairs, we examine two cases of radiation field, one with the Haardt-Madau background radiation field and the other with an additional local radiation field sourced by hot gas in the host galaxy. In all cases, two-sample Kolmogorov-Smirnov tests indicate excellent agreements. We find that the apparent agreements between simulations and observations will be strongly tested, if the bulk of current upper limits of various line ratios are turned into actual detections. We show that an increase in observational sensitivity by 0.2 dex will already start to significantly constrain the models.
212 - Yi Mao 2011
The peculiar velocity of the intergalactic gas responsible for the cosmic 21cm background from the epoch of reionization and beyond introduces an anisotropy in the three-dimensional power spectrum of brightness temperature fluctuations. Measurement of this anisotropy by future 21cm surveys is a promising tool for separating cosmology from 21cm astrophysics. However, previous attempts to model the signal have often neglected peculiar velocity or only approximated it crudely. This paper re-examines the effects of peculiar velocity on the 21cm signal in detail, improving upon past treatment and addressing several issues for the first time. (1) We show that properly accounting for finite optical depth eliminates the unphysical divergence of 21cm brightness temperature in overdense regions of the IGM found by previous work that employed the usual optically-thin approximation. (2) The approximation made previously to circumvent the diverging brightness temperature problem by capping velocity gradient can misestimate the power spectrum on all scales. (3) The observed power spectrum in redshift-space remains finite even in the optically-thin approximation if one properly accounts for the redshift-space distortion. However, results that take full account of finite optical depth show that this approximation is only accurate in the limit of high spin temperature. (4) The linear theory for redshift-space distortion results in ~30% error in the observationally relevant wavenumber range, at the 50% ionized epoch. (5) We describe and test two numerical schemes to calculate the 21cm signal from reionization simulations to incorporate peculiar velocity effects in the optically-thin approximation accurately. One is particle-based, the other grid-based, and while the former is most accurate, we demonstrate that the latter is computationally more efficient and can achieve sufficient accuracy. [Abridged]
202 - Jonathan C. Pober 2014
The highly redshifted 21 cm line of neutral hydrogen has become recognized as a unique probe of cosmology from relatively low redshifts (z ~ 1) up through the Epoch of Reionization (z ~ 8) and even beyond. To date, most work has focused on recovering the spherically averaged power spectrum of the 21 cm signal, since this approach maximizes the signal-to-noise in the initial measurement. However, like galaxy surveys, the 21 cm signal is affected by redshift space distortions, and is inherently anisotropic between the line-of-sight and transverse directions. A measurement of this anisotropy can yield unique cosmological information, potentially even isolating the matter power spectrum from astrophysical effects. However, in interferometric measurements, foregrounds also have an anisotropic footprint between the line-of-sight and transverse directions: the so-called foreground wedge. Although foreground subtraction techniques are actively being developed, a foreground avoidance approach of simply ignoring contaminated modes has arguably proven most successful to date. In this work, we analyze the effect of this foreground anisotropy in recovering the redshift space distortion signature in 21 cm measurements at both high and intermediate redshifts. We find the foreground wedge corrupts nearly all of the redshift space signal for even the largest proposed EoR experiments (HERA and the SKA), making cosmological information unrecoverable without foreground subtraction. The situation is somewhat improved at lower redshifts, where the redshift-dependent mapping from observed coordinates to cosmological coordinates significantly reduces the size of the wedge. Using only foreground avoidance, we find that a large experiment like CHIME can place non-trivial constraints on cosmological parameters.
We present the largest homogeneous survey of $z>4.4$ damped Lyman-$alpha$ systems (DLAs) using the spectra of 163 QSOs that comprise the Giant Gemini GMOS (GGG) survey. With this survey we make the most precise high-redshift measurement of the cosmological mass density of neutral hydrogen, $Omega_{rm HI}$. At such high redshift important systematic uncertainties in the identification of DLAs are produced by strong intergalactic medium absorption and QSO continuum placement. These can cause spurious DLA detections, result in real DLAs being missed, or bias the inferred DLA column density distribution. We correct for these effects using a combination of mock and higher-resolution spectra, and show that for the GGG DLA sample the uncertainties introduced are smaller than the statistical errors on $Omega_{rm HI}$. We find $Omega_{rm HI}=0.98^{+0.20}_{-0.18}times10^{-3}$ at $langle zrangle=4.9$, assuming a 20% contribution from lower column density systems below the DLA threshold. By comparing to literature measurements at lower redshifts, we show that $Omega_{rm HI}$ can be described by the functional form $Omega_{rm HI}(z)propto(1+z)^{0.4}$. This gradual decrease from $z=5$ to $0$ is consistent with the bulk of HI gas being a transitory phase fuelling star formation, which is continually replenished by more highly-ionized gas from the intergalactic medium, and from recycled galactic winds.
131 - Ying Zu 2010
Recently Menard et al. detected a subtle but systematic change in the mean color of quasars as a function of their projected separation from foreground galaxies, extending to comoving separations of ~10Mpc/h, which they interpret as a signature of reddening by intergalactic dust. We present theoretical models of this remarkable observation, using SPH cosmological simulations of a (50Mpc/h)^3 volume. Our primary model uses a simulation with galactic winds and assumes that dust traces the intergalactic metals. The predicted galaxy-dust correlation function is similar in form to the galaxy-mass correlation function, and reproducing the MSFR data requires a dust-to-metal mass ratio of 0.24, about half the value in the Galactic ISM. Roughly half of the reddening arises in dust that is more than 100Kpc/h from the nearest massive galaxy. We also examine a simulation with no galactic winds, which predicts a much smaller fraction of intergalactic metals (3% vs. 35%) and therefore requires an unphysical dust-to-metal ratio of 2.18 to reproduce the MSFR data. In both models, the signal is dominated by sightlines with E(g-i)=0.001-0.1. The no-wind simulation can be reconciled with the data if we also allow reddening to arise in galaxies up to several x 10^10 Msun. The wind model predicts a mean visual extinction of A_V ~0.0133 mag out to z=0.5, with a sightline-to-sightline dispersion similar to the mean, which could be significant for future supernova cosmology studies. Reproducing the MSFR results in these simulations requires that a large fraction of ISM dust survive its expulsion from galaxies and its residence in the intergalactic medium. Future observational studies that provide higher precision and measure the dependence on galaxy type and environment will allow detailed tests for models of enriched galactic outflows and the survival of IG dust.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا