Do you want to publish a course? Click here

Probing Light Atoms at Sub-nanometer Resolution: Realization of Scanning Transmission Electron Microscope Holography

309   0   0.0 ( 0 )
 Added by Fehmi Yasin
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Atomic resolution imaging in transmission electron microscopy (TEM) and scanning TEM (STEM) of light elements in electron-transparent materials has long been a challenge. Biomolecular materials, for example, are rapidly altered when illuminated with electrons. These issues have driven the development of TEM and STEM techniques that enable the structural analysis of electron beam-sensitive and weakly scattering nano-materials. Here, we demonstrate such a technique, STEM holography, capable of absolute phase and amplitude object wave measurement with respect to a vacuum reference wave. We use an amplitude-dividing nanofabricated grating to prepare multiple spatially separated electron diffraction probe beams focused at the sample plane, such that one beam transmits through the specimen while the others pass through vacuum. We raster-scan the diffracted probes over the region of interest. We configure the post specimen imaging system of the microscope to diffraction mode, overlapping the probes to form an interference pattern at the detector. Using a fast-readout, direct electron detector, we record and analyze the interference fringes at each position in a 2D raster scan to reconstruct the complex transfer function of the specimen, t(x). We apply this technique to image a standard target specimen consisting of gold nanoparticles on a thin amorphous carbon substrate, and demonstrate 2.4 angstrom resolution phase images. We find that STEM holography offers higher phase-contrast of the amorphous material while maintaining Au atomic lattice resolution when compared with high angle annular dark field STEM.



rate research

Read More

The use of fast pixelated detectors and direct electron detection technology is revolutionising many aspects of scanning transmission electron microscopy (STEM). The widespread adoption of these new technologies is impeded by the technical challenges associated with them. These include issues related to hardware control, and the acquisition, real-time processing and visualisation, and storage of data from such detectors. We discuss these problems and present software solutions for them, with a view to making the benefits of new detectors in the context of STEM more accessible. Throughout, we provide examples of the application of the technologies presented, using data from a Medipix3 direct electron detector. Most of our software is available under an open source licence, permitting transparency of the implemented algorithms, and allowing the community to freely use and further improve upon them.
We present the design of a highly compact High Field Scanning Probe Microscope (HF-SPM) for operation at cryogenic temperatures in an extremely high magnetic field, provided by a water-cooled Bitter magnet able to reach 38 T. The HF-SPM is 14 mm in diameter: an Attocube nano-positioner controls the coarse approach of a piezo resistive AFM cantilever to a scanned sample. The Bitter magnet constitutes an extreme environment for SPM due to the high level of vibrational noise; the Bitter magnet noise at frequencies up to 300 kHz is characterized and noise mitigation methods are described. The performance of the HF-SPM is demonstrated by topographic imaging and noise measurements at up to 30 T. Additionally, the use of the SPM as a three-dimensional dilatometer for magnetostriction measurements is demonstrated via measurements on a magnetically frustrated spinel sample.
The recent development of electron sensitive and pixelated detectors has attracted the use of four-dimensional scanning transmission electron microscopy (4D-STEM). Here, we present a precession electron diffraction assisted 4D-STEM technique for automated orientation mapping using diffraction spot patterns directly captured by an in-column scintillator based complementary metal-oxide-semiconductor (CMOS) detector. We compare the results to a conventional approach, which utilizes a fluorescent screen filmed by an external CCD camera. The high dynamic range and signal-to-noise characteristics of the detector largely improve the image quality of the diffraction patterns, especially the visibility of diffraction spots at high scattering angles. In the orientation maps reconstructed via the template matching process, the CMOS data yields a significant reduction of false indexing and higher reliability compared to the conventional approach. The angular resolution of misorientation measurement could also be improved by masking reflections close to the direct beam. This is because the orientation sensitive, weak and small diffraction spots at high scattering angle are more significant. The results show that fine details such as nanograins, nanotwins and sub-grain boundaries can be resolved with a sub-degree angular resolution which is comparable to orientation mapping using Kikuchi diffraction patterns.
The rigid-intensity-shift model of differential phase contrast scanning transmission electron microscopy (DPC-STEM) imaging assumes that the phase gradient imposed on the probe by the sample causes the diffraction pattern intensity to shift rigidly by an amount proportional to that phase gradient. This behaviour is seldom realised exactly in practice. Through a combination of experimental results, analytical modelling and numerical calculations, we explore the breakdown of the rigid-intensity-shift behaviour and how this depends on the magnitude of the phase gradient and the relative scale of features in the phase profile and the probe size. We present guidelines as to when the rigid-intensity-shift model can be applied for quantitative phase reconstruction using segmented detectors, and propose probe-shaping strategies to further improve the accuracy.
118 - T. Henn , T. Kiessling , W. Ossau 2013
We describe a two-color pump-probe scanning magneto-optical Kerr effect (MOKE) microscope which we have developed to investigate electron spin phenomena in semiconductors at cryogenic temperatures with picosecond time and micrometer spatial resolution. The key innovation of our microscope is the usage of an ultrafast `white light supercontinuum fiber-laser source which provides access to the whole visible and near-infrared spectral range. Our Kerr microscope allows for the independent selection of the excitation and detection energy while avoiding the necessity to synchronize the pulse trains of two separate picosecond laser systems. The ability to independently tune the pump and probe wavelength enables the investigation of the influence of excitation energy on the optically induced electron spin dynamics in semiconductors. We demonstrate picosecond real-space imaging of the diffusive expansion of optically excited electron spin packets in a (110) GaAs quantum well sample to illustrate the capabilities of the instrument.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا