Do you want to publish a course? Click here

The QUEST-La Silla AGN variability survey: connection between AGN variability and black hole physical properties

97   0   0.0 ( 0 )
 Added by Paula S\\'anchez
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present our statistical analysis of the connection between active galactic nuclei (AGN) variability and physical properties of the central supermassive black hole (SMBH). We constructed optical light curves using data from the QUEST-La Silla AGN variability survey. To model the variability, we used the structure function, among the excess variance and the amplitude from Damp Random Walk (DRW) modeling. For the measurement of SMBH physical properties, we used public spectra from the Sloan Digital Sky Survey (SDSS). Our analysis is based on an original sample of 2345 sources detected in both SDSS and QUEST-La Silla. For 1473 of these sources we could perform a proper measurement of the spectral and variability properties, and 1348 of these sources were classified as variable ($91.5%$). We found that the amplitude of the variability ($A$) depends solely on the rest frame emission wavelength and the Eddington ratio, where $A$ anti-correlates with both $lambda_{rest}$ and $L/L_{text{Edd}}$. This suggests that AGN variability does not evolve over cosmic time, and its amplitude is inversely related to the accretion rate. We found that the logarithmic gradient of the variability ($gamma$) does not correlate significantly with any SMBH physical parameter, since there is no statistically significant linear regression model with an absolute value of the slope higher than 0.1. Finally, we found that the general distribution of $gamma$ measured for our sample differs from the distribution of $gamma$ obtained for light curves simulated from a DRW process. For 20.6% of the variable sources in our sample, a DRW model is not appropriate to describe the variability, since $gamma$ differs considerably from the expected value of 0.5.



rate research

Read More

We present the characterization and initial results from the QUEST-La Silla AGN variability survey. This is an effort to obtain well sampled optical light curves in extragalactic fields with unique multi-wavelength observations. We present photometry obtained from 2010 to 2012 in the XMM-COSMOS field, which was observed over 150 nights using the QUEST camera on the ESO-Schmidt telescope. The survey uses a broadband filter, the $Q$-band, similar to the union of the $g$ and the $r$ filters, achieving an intrinsic photometric dispersion of $0.05$ mag, and a systematic error of $0.05$ mag in the zero-point. Since some detectors of the camera show significant non-linearity, we use a linear correlation to fit the zero-points as a function of the instrumental magnitudes, thus obtaining a good correction to the non-linear behavior of these detectors. We obtain good photometry to an equivalent limiting magnitude of $rsim 20.5$. Studying the optical variability of X-ray detected sources in the XMM-COSMOS field, we find that the survey is $sim75-80$% complete to magnitudes $rsim20$, and $sim67$% complete to a magnitude $rsim21$. The determination and parameterization of the structure function (${SF}_{norm}(tau) = A tau^{gamma}$) of the variable sources shows that most BL AGN are characterized by $A > 0.1$ and $gamma > 0.025$. It is further shown that variable NL AGN and GAL sources occupying the same parameter space in $A$ and $gamma$ are very likely to correspond to obscured or low luminosity AGN. Our samples are, however, small, and we expect to revisit these results using larger samples with longer light curves obtained as part of our ongoing survey.
We used data from the QUEST-La Silla Active Galactic Nuclei (AGN) variability survey to construct light curves for 208,583 sources over $sim 70$ deg$^2$, with a a limiting magnitude $r sim 21$. Each light curve has at least 40 epochs and a length of $geq 200$ days. We implemented a Random Forest algorithm to classify our objects as either AGN or non-AGN according to their variability features and optical colors, excluding morphology cuts. We tested three classifiers, one that only includes variability features (RF1), one that includes variability features and also $r-i$ and $i-z$ colors (RF2), and one that includes variability features and also $g-r$, $r-i$, and $i-z$ colors (RF3). We obtained a sample of high probability candidates (hp-AGN) for each classifier, with 5,941 candidates for RF1, 5,252 candidates for RF2, and 4,482 candidates for RF3. We divided each sample according to their $g-r$ colors, defining blue ($g-rleq 0.6$) and red sub-samples ($g-r>0.6$). We find that most of the candidates known from the literature belong to the blue sub-samples, which is not necessarily surprising given that, unlike for many literature studies, we do not cut our sample to point-like objects. This means that we can select AGN that have a significant contribution from redshifted starlight in their host galaxies. In order to test the efficiency of our technique we performed spectroscopic follow-up, confirming the AGN nature of 44 among 54 observed sources (81.5% of efficiency). From the campaign we concluded that RF2 provides the purest sample of AGN candidates.
574 - Ellie Hadjiyska 2012
We describe the La Silla-QUEST (LSQ) Variability Survey. LSQ is a dedicated wide-field synoptic survey in the Southern Hemisphere, focussing on the discovery and study of transients ranging from low redshift (z < 0.1) SN Ia, Tidal Disruption events, RR Lyr{ae} variables, CVs, Quasars, TNOs and others. The survey utilizes the 1.0-m Schmidt Telescope of the European Southern Observatory at La Silla, Chile, with the large-area QUEST camera, a mosaic of 112 CCDs with field of view of 9.6 square degrees. The LSQ Survey was commissioned in 2009, and is now regularly covering ~1000 square deg per night with a repeat cadence of hours to days. The data are currently processed on a daily basis. We present here a first look at the photometric capabilities of LSQ and we discuss some of the most interesting recent transient detections.
We investigate the effect of active galactic nucleus (AGN) variability on the observed connection between star formation and black hole accretion in extragalactic surveys. Recent studies have reported relatively weak correlations between observed AGN luminosities and the properties of AGN hosts, which has been interpreted to imply that there is no direct connection between AGN activity and star formation. However, AGNs may be expected to vary significantly on a wide range of timescales (from hours to Myr) that are far shorter than the typical timescale for star formation (>~100 Myr). This variability can have important consequences for observed correlations. We present a simple model in which all star-forming galaxies host an AGN when averaged over ~100 Myr timescales, with long-term average AGN accretion rates that are perfectly correlated with the star formation rate (SFR). We show that reasonable prescriptions for AGN variability reproduce the observed weak correlations between SFR and L_AGN in typical AGN host galaxies, as well as the general trends in the observed AGN luminosity functions, merger fractions, and measurements of the average AGN luminosity as a function of SFR. These results imply there may be a tight connection between AGN activity and SFR over galaxy evolution timescales, and that the apparent similarities in rest-frame colors, merger rates, and clustering of AGNs compared to inactive galaxies may be due primarily to AGN variability. The results provide motivation for future deep, wide extragalactic surveys that can measure the distribution of AGN accretion rates as a function of SFR.
We study variability of active galactic nuclei (AGNs) by using the deep optical multiband photometry data obtained from the Hyper Suprime-Cam Subaru Strategic Program (HSC SSP) survey in the COSMOS field. The images analyzed here were taken with 8, 10, 13, and 15 epochs over three years in the $g$, $r$, $i$, and $z$ bands, respectively. We identified 491 robust variable AGN candidates, down to $i=25$ mag and with redshift up to $4.26$. Ninety percent of the variability-selected AGNs are individually identified with the X-ray sources detected in the Chandra COSMOS Legacy survey. We investigate their properties in variability by using structure function analysis and find that the structure function for low-luminosity AGNs ($L_{mathrm{bol}}lesssim10^{45}$ erg s$^{-1}$) shows a positive correlation with luminosity, which is the opposite trend for the luminous quasars. This trend is likely to be caused by larger contribution of the host galaxy light for lower-luminosity AGNs. Using the model templates of galaxy spectra, we evaluate the amount of host galaxy contribution to the structure function analysis and find that dominance of the young stellar population is needed to explain the observed luminosity dependence. This suggests that low-luminosity AGNs at $0.8lesssim zlesssim1.8$ are predominantly hosted in star-forming galaxies. The X-ray stacking analysis reveals the significant emission from the individually X-ray undetected AGNs in our variability-selected sample. The stacked samples show very large hardness ratios in their stacked X-ray spectrum, which suggests that these optically variable sources have large soft X-ray absorption by dust-free gas.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا