Schur algebras and quantum symmetric pairs with unequal parameters


Abstract in English

We study the (quantum) Schur algebras of type B/C corresponding to the Hecke algebras with unequal parameters. We prove that the Schur algebras afford a stabilization construction in the sense of Beilinson-Lusztig-MacPherson that constructs a multiparameter upgrade of the quantum symmetric pair coideal subalgebras of type A III/IV with no black nodes. We further obtain the canonical basis of the Schur/coideal subalgebras, at the specialization associated to any weight function. These bases are the counterparts of Lusztigs bar-invariant basis for Hecke algebras with unequal parameters. In the appendix we provide an algebraic version of a type D Beilinson-Lusztig-MacPherson construction which is first introduced by Fan-Li from a geometric viewpoint.

Download