No Arabic abstract
HD 219134 hosts several planets, with seven candidates reported, and the two shortest period planets are rocky (4-5 $M_{oplus}$) and transit the star. Here we present contemporaneous multi-wavelength observations of the star HD 219134. We observed HD 219134 with the Narval spectropolarimeter at the Observatoire du Pic du Midi, and used Zeeman Doppler Imaging to characterise its large-scale stellar magnetic field. We found a weak poloidal magnetic field with an average unsigned strength of 2.5 G. From these data we confidently confirm the rotation period of 42 days, measure a stellar inclination of 77$pm$8 degrees, and find evidence for differential rotation. The projected obliquity of the two transiting super-Earths is therefore between 0 and 20 degrees. We employed HST STIS observations of the Ly$alpha$ line to derive a stellar wind mass-loss rate of half the solar value ($10^{-14} M_{odot} {rm yr}^{-1}$). We further collected photometric transit observations of the closest planet at near-UV wavelengths centred on the Mg II h&k lines with AstroSat. We found no detectable absorption, setting an upper limit on the transit depth of about 3%, which rules out the presence of a giant magnesium cloud larger than 9 planet radii. Finally, we estimated the high-energy flux distribution of HD 219134 as seen by planets b and c. These results present a detailed contemporaneous characterisation of HD 219134, and provide the ingredients necessary for accurately modelling the high-energy stellar flux, the stellar wind, and their impact on the two shortest-period planets, which will be presented in the second paper of this series.
We present new, high-precision Doppler radial velocity (RV) data sets for the nearby K3V star HD 219134. The data include 175 velocities obtained with the HIRES Spectrograph at the Keck I Telescope, and 101 velocities obtained with the Levy Spectrograph at the Automated Planet Finder Telescope (APF) at Lick Observatory. Our observations reveal six new planetary candidates, with orbital periods of P=3.1, 6.8, 22.8, 46.7, 94.2 and 2247 days, spanning masses of msini=3.8, 3.5, 8.9, 21.3, 10.8 and 108 M_earth respectively. Our analysis indicates that the outermost signal is unlikely to be an artifact induced by stellar activity. In addition, several years of precision photometry with the T10 0.8~m automatic photometric telescope (APT) at Fairborn Observatory demonstrated a lack of brightness variability to a limit of ~0.0002 mag, providing strong support for planetary-reflex motion as the source of the radial velocity variations. The HD 219134 system, with its bright (V=5.6) primary provides an excellent opportunity to obtain detailed orbital characterization (and potentially follow-up observations) of a planetary system that resembles many of the multiple-planet systems detected by Kepler, and which are expected to be detected by NASAs forthcoming TESS Mission and by ESAs forthcoming PLATO Mission.
We present a 3D study of the formation of refractory-rich exospheres around the rocky planets HD219134b and c. These exospheres are formed by surface particles that have been sputtered by the wind of the host star. The stellar wind properties are derived from magnetohydrodynamic simulations, which are driven by observationally-derived stellar magnetic field maps, and constrained by Ly-alpha observations of wind mass-loss rates, making this one of the most well constrained model of winds of low-mass stars. The proximity of the planets to their host star implies a high flux of incident stellar wind particles, thus the sputtering process is sufficiently effective to build up relatively dense, refractory-rich exospheres. The sputtering releases refractory elements from the entire dayside surfaces of the planets, with elements such as O and Mg creating an extended neutral exosphere with densities larger than 10/cm3, extending to several planetary radii. For planet b, the column density of OI along the line of sight reaches 10^{13}/cm2, with the highest values found ahead of its orbital motion. This asymmetry would create asymmetric transit profiles. To assess its observability, we use a ray tracing technique to compute the expected transit depth of the OI exosphere of planet b. We find that the transit depth in the OI 1302.2A line is 0.042%, which is a small increase relative to the continuum transit (0.036%). This implies that the sputtered exosphere of HD219134b is unlikely to be detectable with our current UV instruments.
Spatially resolved continuum observations of planet-forming disks show prominent ring and gap structures in their dust distribution. However, the picture from gas observations is much less clear and constraints on the radial gas density structure (i.e. gas gaps) remain rare and uncertain. We want to investigate the importance of thermo-chemical processes for the interpretation of high-spatial-resolution gas observations of planet-forming disks and their impact on derived gas properties. We apply the radiation thermo-chemical disk code ProDiMo (PROtoplanetary DIsk MOdel) to model self-consistently the dust and gas disk of HD 163296, using the DSHARP gas and dust observations. With this model we investigate the impact of dust gaps and gas gaps, considering chemistry and heating/cooling processes, on the observables and the derived gas properties. We find distinct peaks in the radial line intensity profiles of the CO line data of HD 163296 at the location of the dust gaps. Our model indicates that those peaks are not only a consequence of a gas temperature increase within the gaps but are mainly caused by the absorption of line emission from the back side of the disk by the dust rings. For two of the three prominent dust gaps in HD 163296, we find that thermo-chemical effects are negligible for deriving density gradients via measurements of the rotation velocity. However, for the gap with the highest dust depletion, the temperature gradient can be dominant and needs to be considered to derive accurate gas density profiles. Self-consistent gas and dust thermo-chemical modelling in combination with high-quality observations of multiple molecules are necessary to accurately derive gas gap depths and shapes. This is crucial to determine the origin of gaps and rings in planet-forming disks and to improve the mass estimates of forming planets if they are the cause of the gap.
The large number of close-in Jupiter-size exoplanets prompts the question whether star-planet interaction (SPI) effects can be detected. We focused our attention on the system HD 17156, having a Jupiter-mass planet in a very eccentric orbit. Here we present results of the XMM-Newton observations and of a five months coordinated optical campaign with the HARPS-N spectrograph. We observed HD 17156 with XMM-Newton when the planet was approaching the apoastron and then at the following periastron passage, quasi simultaneously with HARPS-N. We obtained a clear ($approx 5.5sigma$) X-ray detection only at the periastron visit, accompanied by a significant increase of the $R_{rm HK}$ chromospheric index. We discuss two possible scenarios for the activity enhancement: magnetic reconnection and flaring or accretion onto the star of material tidally stripped from the planet. In any case, this is possibly the first evidence of a magnetic SPI effect caught in action.
Tau Boo is an intriguing planet-host star that is believed to undergo magnetic cycles similar to the Sun, but with a duration that is about one order of magnitude smaller than that of the solar cycle. With the use of observationally derived surface magnetic field maps, we simulate the magnetic stellar wind of Tau Boo by means of three-dimensional MHD numerical simulations. As the properties of the stellar wind depend on the particular characteristics of the stellar magnetic field, we show that the wind varies during the observed epochs of the cycle. Although the mass loss-rates we find (~2.7e-12 Msun/yr) vary less than 3 per cent during the observed epochs of the cycle, our derived angular momentum loss-rates vary from 1.1 to 2.2e32erg. The spin-down times associated to magnetic braking range between 39 and 78Gyr. We also compute the emission measure from the (quiescent) closed corona and show that it remains approximately constant through these epochs at a value of ~10^{50.6} cm^{-3}. This suggests that a magnetic cycle of Tau Boo may not be detected by X-ray observations. We further investigate the interaction between the stellar wind and the planet by estimating radio emission from the hot-Jupiter that orbits at 0.0462 au from Tau Boo. By adopting reasonable hypotheses, we show that, for a planet with a magnetic field similar to Jupiter (~14G at the pole), the radio flux is estimated to be about 0.5-1 mJy, occurring at a frequency of 34MHz. If the planet is less magnetised (field strengths roughly <4G), detection of radio emission from the ground is unfeasible due to the Earths ionospheric cutoff. According to our estimates, if the planet is more magnetised than that and provided the emission beam crosses the observer line-of-sight, detection of radio emission from Tau Boo b is only possible by ground-based instruments with a noise level of < 1 mJy, operating at low frequencies.