No Arabic abstract
We investigate under which conditions supermassive hot Jupiters can sustain source regions for radio emission, and whether this emission could propagate to an observer outside the system. We study Tau Bootis b-like planets (a supermassive hot Jupiter with 5.84 Jupiter masses and 1.06 Jupiter radii), but located at different orbital distances (between its actual orbit of 0.046 AU and 0.2 AU). Due to the strong gravity of such planets and efficient radiative cooling, the upper atmosphere is (almost) hydrostatic and the exobase remains very close to the planet, which makes it a good candidate for radio observations. We expect similar conditions as for Jupiter, i.e. a region between the exobase and the magnetopause that is filled with a depleted plasma density compared with cases where the whole magnetosphere cavity is filled with hydrodynamically outward flowing ionospheric plasma. Thus, unlike classical hot Jupiters like the previously studied planets HD 209458b and HD 189733b, supermassive hot Jupiters should be in general better targets for radio observations.
Hot Jupiters have been proposed as a likely population of low frequency radio sources due to electron cyclotron maser emission of similar nature to that detected from the auroral regions of magnetized solar system planets. Such emission will likely be confined to specific ranges of orbital/rotational phase due to a narrowly beamed radiation pattern. We report on GMRT 150 MHz radio observations of the hot Jupiter Tau Bootis b, consisting of 40 hours carefully scheduled to maximize coverage of the planets 79.5 hour orbital/rotational period in an effort to detect such rotationally modulated emission. The resulting image is the deepest yet published at these frequencies and leads to a 3-sigma upper limit on the flux density from the planet of 1.2 mJy, two orders of magnitude lower than predictions derived from scaling laws based on solar system planetary radio emission. This represents the most stringent upper limits for both quiescent and rotationally modulated radio emission from a hot Jupiter yet achieved and suggests that either a) the magnetic dipole moment of Tau Bootis b is insufficient to generate the surface field strengths of > 50 Gauss required for detection at 150 MHz or b) Earth lies outside the beaming pattern of the radio emission from the planet.
Context. The Sun is an active source of radio emission ranging from long duration radio bursts associated with solar flares and coronal mass ejections to more complex, short duration radio bursts such as solar S bursts, radio spikes and fibre bursts. While plasma emission is thought to be the dominant emission mechanism for most radio bursts, the electron-cyclotron maser (ECM) mechanism may be responsible for more complex, short-duration bursts as well as fine structures associated with long-duration bursts. Aims. We investigate the conditions for ECM in the solar corona by considering the ratio of the electron plasma frequency {omega}p to the electron-cyclotron frequency {Omega}e. The ECM is theoretically possible when {omega}p/{Omega}e < 1. Methods. Two-dimensional electron density, magnetic field, plasma frequency, and electron cyclotron frequency maps of the off- limb corona were created using observations from SDO/AIA and SOHO/LASCO, together with potential field extrapolations of the magnetic field. These maps were then used to calculate {omega}p/{Omega}e and Alfven velocity maps of the off-limb corona. Results. We found that the condition for ECM emission ({omega}p/{Omega}e < 1) is possible at heights < 1.07 R_sun in an active region near the limb; that is, where magnetic field strengths are > 40 G and electron densities are greater than 3x10^8 cm-3. In addition, we found comparatively high Alfven velocities (> 0.02 c or > 6000 km s-1) at heights < 1.07 R_sun within the active region. Conclusions. This demonstrates that the condition for ECM emission is satisfied within areas of the corona containing large magnetic fields, such as the core of a large active region. Therefore, ECM could be a possible emission mechanism for high-frequency radio and microwave bursts.
Recent study suggests that the streaming instability, one of the leading mechanisms for driving the formation of planetesimals, may not be as efficient as previously thought. Under some disc conditions, the growth timescale of the instability can be longer than the disc lifetime when multiple dust species are considered. To further explore this finding, we use both linear analysis and direct numerical simulations with gas fluid and dust particles to mutually validate and study the unstable modes of the instability in more detail. We extend the previously studied parameter space by one order of magnitude in both the range of the dust-size distribution $[T_{s,min}, T_{s,max}]$ and the total solid-to-gas mass ratio $varepsilon$ and introduce a third dimension with the slope $q$ of the size distribution. We find that the fast-growth regime and the slow-growth regime are distinctly separated in the $varepsilon$-$T_{s,max}$ space, while this boundary is not appreciably sensitive to $q$ or $T_{s,min}$. With a wide range of dust sizes present in the disc (e.g. $T_{s,min}lesssim10^{-3}$), the growth rate in the slow-growth regime decreases as more dust species are considered. With a narrow range of dust sizes (e.g. $T_{s,max}/T_{s,min}=5$), on the other hand, the growth rate in most of the $varepsilon$-$T_{s,max}$ space is converged with increasing dust species, but the fast and the slow growth regimes remain clearly separated. Moreover, it is not necessary that the largest dust species dominate the growth of the unstable modes, and the smaller dust species can affect the growth rate in a complicated way. In any case, we find that the fast-growth regime is bounded by $varepsilongtrsim 1$ or $T_{s,max}gtrsim 1$, which may represent the favourable conditions for planetesimal formation.
Context: It has been speculated for many years that some extrasolar planets may emit strong cyclotron emission at low radio frequencies in the range 10-100 MHz. Despite several attempts no such emission has yet been seen. Aims: The hot Jupiter system tau Bootis is one of the nearest (d=15 pc) exoplanets known to date. The gravitational influence of this massive hot Jupiter (M=6 M_jup) has locked the star-planet system, making the star rotate in P~3.3 days, similar to the orbital period of the planet. From the well established correlation between stellar rotation and radio luminosity, it is conceivable that the tau Bootis system emits strong radio emission at significantly higher frequencies than currently probed, which we aimed to investigate with this work. Methods: We observed tau Bootis with the Westerbork Synthesis Radio Telescope (WSRT) at a frequency of 1.7 GHz. for 12 hours in spectral line mode, reaching a noise level of 42 microJy/beam at the position of the target. Results: No 18cm radio emission is detected from tau Bootis, resulting in a 3 sigma upper limit of 0.13 mJy, corresponding to a 18cm radio luminosity of <3.7e13 erg/s/Hz. We observe tau Bootis to be two orders of magnitude fainter than expected from the stellar relation between radio luminosity and rotation velocity. Conclusions: This implies that either the tau Bootis system is underluminous in the radio compared to similar fast-rotating stars, or that we happened to observe the target during a low state of radio emission.
The helium absorption line at 10830 {AA}, originating from the metastable triplet state 2$^3$S, has been suggested as an excellent probe for the extended atmospheres of hot Jupiters and their hydrodynamic escape processes, and has recently been detected in the transmission spectra of a handful of planets. The isotropic re-emission will lead to helium airglow that may be observable at other orbital phases. The goal of this paper is to investigate the detectability of He I emission at 10830 {AA} in the atmospheres of exoplanets using high-resolution spectroscopy, providing insights into the properties of the upper atmospheres of close-in gas giants. We estimated the expected strength of He I emission in hot Jupiters based on their transmission signal. We searched for the He I 10830 {AA} emission feature in tau Boo b in three nights of high-resolution spectra taken by CARMENES at the 3.5m Calar Alto telescope. The spectra from each night were corrected for telluric absorption, sky emission lines, and stellar features, and were shifted to the planetary rest frame to search for the emission. The He I emission is not detected in tau Boo b, reaching a 5 sigma contrast limit of 4$times$10$^{-4}$ for emission line widths above 20 km/s. This is roughly a factor of 8 above the expected level of emission (assuming a typical He I transit absorption of 1% for hot Jupiters). This suggests that targeting the He I emission with well-designed observations using upcoming instruments such as VLT/CRIRES+ and E-ELT/HIRES is possible.