Gaussian Process Landmarking for Three-Dimensional Geometric Morphometrics


Abstract in English

We demonstrate applications of the Gaussian process-based landmarking algorithm proposed in [T. Gao, S.Z. Kovalsky, and I. Daubechies, SIAM Journal on Mathematics of Data Science (2019)] to geometric morphometrics, a branch of evolutionary biology centered at the analysis and comparisons of anatomical shapes, and compares the automatically sampled landmarks with the ground truth landmarks manually placed by evolutionary anthropologists; the results suggest that Gaussian process landmarks perform equally well or better, in terms of both spatial coverage and downstream statistical analysis. We provide a detailed exposition of numerical procedures and feature filtering algorithms for computing high-quality and semantically meaningful diffeomorphisms between disk-type anatomical surfaces.

Download