Do you want to publish a course? Click here

A 50 pc scale view of star formation efficiency across NGC 628

61   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Star formation is a multi-scale process that requires tracing cloud formation and stellar feedback within the local (<kpc) and global galaxy environment. We present first results from two large observing programs on ALMA and VLT/MUSE, mapping cloud scales (1arcsec = 47pc) in both molecular gas and star forming tracers across 90 kpc^2 of the central disk of NGC 628 to probe the physics of star formation. Systematic spatial offsets between molecular clouds and HII regions illustrate the time evolution of star-forming regions. Using uniform sampling of both maps on 50-500 pc scales, we infer molecular gas depletion times of 1-3 Gyr, but also find the increase of scatter in the star formation relation on small scales is consistent with gas and HII regions being only weakly correlated at the cloud (50 pc) scale. This implies a short overlap phase for molecular clouds and HII regions, which we test by directly matching our catalog of 1502 HII regions and 738 GMCs. We uncover only 74 objects in the overlap phase, and we find depletion times >1 Gyr, significantly longer than previously reported for individual star-forming clouds in the Milky Way. Finally, we find no clear trends that relate variations in the depletion time observed on 500 pc scales to physical drivers (metallicity, molecular and stellar mass surface density, molecular gas boundedness) on 50 pc scales.



rate research

Read More

93 - F. Sakhibov , A. S. Gusev , 2021
Star formation induced by a spiral shock wave, which in turn is generated by a spiral density wave, produces an azimuthal age gradient across the spiral arm, which has opposite signs on either side of the corotational resonance. An analysis of the spatial separation between young star clusters and nearby HII regions made it possible to determine the position of the corotation radius in the studied galaxies. Fourier analysis of the gas velocity field in the same galaxies independently confirmed the corotation radius estimates obtained by the morphological method presented here.
We present the first spatially resolved (~0.5 kpc) measurements of the molecular gas depletion time $tau_{depl}$ across the disk of the interacting spiral galaxy NGC,2276, a system with an asymmetric morphology in various SFR tracers. To estimate $tau_{depl}$, we use new NOEMA observations of the $^{12}$CO(1-0) emission tracing the bulk molecular gas reservoir in NGC 2276, and extinction-corrected H$alpha$ measurements obtained with the PMAS/PPaK integral field unit for robust estimates of the SFR. We find a systematic decrease in $tau_{depl}$ of 1-1.5 dex across the disk of NGC 2276, with a further, abrupt drop in $tau_{depl}$ of ~1 dex along the galaxys western edge. The global $tau_{depl}$ in NGC 2776 is $tau_{depl}=0.55$ Gyr, insistent with literature measurements for the nearby galaxy population. Such a large range in $tau_{depl}$ on sub-kpc scales has never previously been observed within an individual isolated or pre-merger system. When using a metallicity-dependent molecular gas conversion factor X$rm_{CO}$ the variation decreases by 0.5 dex. We attribute the variation in $tau_{depl}$ to the influence of galactic-scale tidal forces and ram pressure on NGC 2276s molecular interstellar medium (ISM). Our observations add to the growing body of numerical and observational evidence that galaxy-galaxy interactions significantly modify the molecular gas properties and star-forming activity within galactic disks throughout the interaction, and not just during the final merger phase.
We present a detailed clustering analysis of the young stellar population across the star-forming ring galaxy NGC 6503, based on the deep HST photometry obtained with the Legacy ExtraGalactic UV Survey (LEGUS). We apply a contour-based map analysis technique and identify in the stellar surface density map 244 distinct star-forming structures at various levels of significance. These stellar complexes are found to be organized in a hierarchical fashion with 95% being members of three dominant super-structures located along the star-forming ring. The size distribution of the identified structures and the correlation between their radii and numbers of stellar members show power-law behaviors, as expected from scale-free processes. The self-similar distribution of young stars is further quantified from their autocorrelation function, with a fractal dimension of ~1.7 for length-scales between ~20 pc and 2.5 kpc. The young stellar radial distribution sets the extent of the star-forming ring at radial distances between 1 and 2.5 kpc. About 60% of the young stars belong to the detected stellar structures, while the remaining stars are distributed among the complexes, still inside the ring of the galaxy. The analysis of the time-dependent clustering of young populations shows a significant change from a more clustered to a more distributed behavior in a time-scale of ~60 Myr. The observed hierarchy in stellar clustering is consistent with star formation being regulated by turbulence across the ring. The rotational velocity difference between the edges of the ring suggests shear as the driving mechanism for this process. Our findings reveal the interesting case of an inner ring forming stars in a hierarchical fashion.
Relations between star formation rates along the spiral arms and the velocities of gas inflow into the arms in grand-design galaxy NGC 628 were studied. We found that the radial distribution of average star formation rate in individual star formation regions in regular spiral arms correlates with the velocity of gas inflow into the spiral arms. Both distributions have maxima at a galactocentric distance of 4.5-5 kpc. There are no correlations between the radial distributions of average star formation rate in star formation regions in spiral arms and outside spiral arms in the main disc. We also did not find a correlation between the radial distribution of average star formation rate in star formation regions in spiral arms and HI column density.
We present a spatially resolved study of the relation between dust and metallicity in the nearby spiral galaxies M101 (NGC 5457) and NGC 628 (M74). We explore the relation between the chemical abundances of their gas and stars with their dust content and their chemical evolution. The empirical spatially resolved oxygen effective yield and the gas to dust mass ratio (GDR) across both disc galaxies are derived, sampling one dex in oxygen abundance. We find that the metal budget of the NGC 628 disc and most of the M101 disc appears consistent with the predictions of the simple model of chemical evolution for an oxygen yield between half and one solar, whereas the outermost region (R<0.8R25) of M101 presents deviations suggesting the presence of gas flows. The GDR-metallicity relation shows a two slopes behaviour, with a break at 12+log(O/H)~8.4, a critical metallicity predicted by theoretical dust models when stardust production equals grain growth. A relation between GDR and the fraction of molecular to total gas, Sigma(H2)/Sigma(gas) is also found. We suggest an empirical relationship between GDR and the combination of 12+log(O/H), for metallicity, and Sigma(H2)/Sigma(gas), a proxy for the molecular clouds fraction. The GDR is closely related with metallicity at low abundance and with Sigma(H2)/Sigma(gas) for higher metallicities suggesting ISM dust growth. The ratio Sigma(dust)/Sigma(star) correlates well with 12 + log(O/H) and strongly with log(N/O) in both galaxies. For abundances below the critical one, the stardust production gives us a constant value suggesting a stellar dust yield similar to the oxygen yield.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا