No Arabic abstract
We carry out an extensive linear stability analysis of magnetized cylindrical jets in a global framework. Foregoing the commonly invoked force-free limit, we focus on the small-scale, internal instabilities triggered in regions of the jet dominated by a toroidal magnetic field, with a weak vertical field and finite thermal pressure gradient. Such regions are likely to occur far from the jet source and boundaries, and are potential sites of magnetic energy dissipation that is essential to explain the particle acceleration and radiation observed from astrophysical jets. We validate the local stability analysis of Begelman by verifying that the eigenfunctions of the most unstable modes are radially localized. This finding allows us to propose a generic stability criterion in the presence of a weak vertical field. A stronger vertical field with a radial gradient complicates the stability criterion, due to the competition between the destabilizing thermal pressure gradient and stabilizing magnetic pressure gradients. Nevertheless, we argue that the jet interiors generically should be subject to rapidly growing, small-scale instabilities, capable of producing current sheets that lead to dissipation. We identify some new instabilities, not predicted by the local analysis, which are sensitive to the background radial profiles but have smaller growth rates than the local instabilities, and discuss the relevance of our work to the findings of recent numerical jet simulations.
The internal shocks scenario in relativistic jets is used to explain the variability of the blazar emission. Recent studies have shown that the magnetic field significantly alters the shell collision dynamics, producing a variety of spectral energy distributions and light-curves patterns. However, the role played by magnetization in such emission processes is still not entirely understood. In this work we numerically solve the magnetohydodynamic evolution of the magnetized shells collision, and determine the influence of the magnetization on the observed radiation. Our procedure consists in systematically varying the shell Lorentz factor, relative velocity, and viewing angle. The calculations needed to produce the whole broadband spectral energy distributions and light-curves are computationally expensive, and are achieved using a high-performance parallel code.
The internal-shocks scenario in relativistic jets has been used to explain the variability of blazars outflow emission. Recent simulations have shown that the magnetic field alters the dynamics of these shocks producing a whole zoo of spectral energy density patterns. However, the role played by magnetization in such high-energy emission is still not entirely understood. With the aid of emph{Fermi}s second LAT AGN catalog, a comparison with observations in the $gamma$-ray band was performed, in order to identify the effects of the magnetic field.
We have performed two-dimensional special-relativistic magnetohydrodynamic simulations of non-equilibrium over-pressured relativistic jets in cylindrical geometry. Multiple stationary recollimation shock and rarefaction structures are produced along the jet by the nonlinear interaction of shocks and rarefaction waves excited at the interface between the jet and the surrounding ambient medium. Although initially the jet is kinematically dominated, we have considered axial, toroidal and helical magnetic fields to investigate the effects of different magnetic-field topologies and strengths on the recollimation structures. We find that an axial field introduces a larger effective gas-pressure and leads to stronger recollimation shocks and rarefactions, resulting in larger flow variations. The jet boost grows quadratically with the initial magnetic field. On the other hand, a toroidal field leads to weaker recollimation shocks and rarefactions, modifying significantly the jet structure after the first recollimation rarefaction and shock. The jet boost decreases systematically. For a helical field, instead, the behaviour depends on the magnetic pitch, with a phenomenology that ranges between the one seen for axial and toroidal magnetic fields, respectively. In general, however, a helical magnetic field yields a more complex shock and rarefaction substructure close to the inlet that significantly modifies the jet structure. The differences in shock structure resulting from different field configurations and strengths may have observable consequences for disturbances propagating through a stationary recollimation shock.
When a magnetically-dominated super-fast magnetosonic GRB jet leaves the progenitor star the external pressure support may drop and the jet may enter the regime of ballistic expansion during which its magnetic acceleration becomes highly ineffective. However, recent numerical simulations suggested that the transition to this regime is accompanied by a sudden burst of acceleration. We confirm this finding and attribute the acceleration to the sideways expansion of the jet - the magnetic energy is converted into the kinetic one in the strong magnetosonic rarefaction wave, which is launched when the jet loses its external support. This type of acceleration, the rarefaction acceleration, is specific to relativistic jets because their energy budget can still be dominated by magnetic energy even in highly super-fast magnetosonic regime. Just like the collimation acceleration of externally confined magnetized jets, it is connected with the geometry of magnetic flux sufaces. In both cases, in the acceleration zone the poloidal field lines diverge faster than in the monopolar configuration. On the other hand, whereas the collimation acceleration keeps the product of jet opening angle and Lorentz factor somewhat below unity, the rarefaction acceleration allows to make it significantly larger, in agreement with the standard model of jet breaks in afterglow light curves.
Gamma-ray bursts (GRBs) are powered by relativistic jets that exhibit intermittency over a broad range of timescales - from $ sim $ ms to seconds. Previous numerical studies have shown that hydrodynamic (i.e., unmagnetized) jets that are expelled from a variable engine are subject to strong mixing of jet and cocoon material, which strongly inhibits the GRB emission. In this paper we conduct 3D RMHD simulations of mildly magnetized jets with power modulation over durations of 0.1 s and 1 s, and a steady magnetic field at injection. We find that when the jet magnetization at the launching site is $sigma sim 0.1$, the initial magnetization is amplified by shocks formed in the flow to the point where it strongly suppresses baryon loading. We estimate that a significant contamination can be avoided if the magnetic energy at injection constitutes at least a few percent of the jet energy. The variability timescales of the jet after it breaks out of the star are then governed by the injection cycles rather than by the mixing process, suggesting that in practice jet injection should fluctuate on timescales as short as $ sim 10 $ ms in order to account for the observed light curves. Better stability is found for jets with shorter modulations. We conclude that for sufficiently hot jets, the Lorentz factor near the photosphere can be high enough to allow efficient photospheric emission. Our results imply that jets with $ 10^{-2} < sigma < 1 $ injected by a variable engine with $ sim 10 $ ms duty cycle are plausible sources of long GRBs.