Do you want to publish a course? Click here

Learning Adaptive Discriminative Correlation Filters via Temporal Consistency Preserving Spatial Feature Selection for Robust Visual Tracking

138   0   0.0 ( 0 )
 Added by Zhenhua Feng
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

With efficient appearance learning models, Discriminative Correlation Filter (DCF) has been proven to be very successful in recent video object tracking benchmarks and competitions. However, the existing DCF paradigm suffers from two major issues, i.e., spatial boundary effect and temporal filter degradation. To mitigate these challenges, we propose a new DCF-based tracking method. The key innovations of the proposed method include adaptive spatial feature selection and temporal consistent constraints, with which the new tracker enables joint spatial-temporal filter learning in a lower dimensional discriminative manifold. More specifically, we apply structured spatial sparsity constraints to multi-channel filers. Consequently, the process of learning spatial filters can be approximated by the lasso regularisation. To encourage temporal consistency, the filter model is restricted to lie around its historical value and updated locally to preserve the global structure in the manifold. Last, a unified optimisation framework is proposed to jointly select temporal consistency preserving spatial features and learn discriminative filters with the augmented Lagrangian method. Qualitative and quantitative evaluations have been conducted on a number of well-known benchmarking datasets such as OTB2013, OTB50, OTB100, Temple-Colour, UAV123 and VOT2018. The experimental results demonstrate the superiority of the proposed method over the state-of-the-art approaches.



rate research

Read More

We propose a new Group Feature Selection method for Discriminative Correlation Filters (GFS-DCF) based visual object tracking. The key innovation of the proposed method is to perform group feature selection across both channel and spatial dimensions, thus to pinpoint the structural relevance of multi-channel features to the filtering system. In contrast to the widely used spatial regularisation or feature selection methods, to the best of our knowledge, this is the first time that channel selection has been advocated for DCF-based tracking. We demonstrate that our GFS-DCF method is able to significantly improve the performance of a DCF tracker equipped with deep neural network features. In addition, our GFS-DCF enables joint feature selection and filter learning, achieving enhanced discrimination and interpretability of the learned filters. To further improve the performance, we adaptively integrate historical information by constraining filters to be smooth across temporal frames, using an efficient low-rank approximation. By design, specific temporal-spatial-channel configurations are dynamically learned in the tracking process, highlighting the relevant features, and alleviating the performance degrading impact of less discriminative representations and reducing information redundancy. The experimental results obtained on OTB2013, OTB2015, VOT2017, VOT2018 and TrackingNet demonstrate the merits of our GFS-DCF and its superiority over the state-of-the-art trackers. The code is publicly available at https://github.com/XU-TIANYANG/GFS-DCF.
Correlation filter (CF)-based methods have demonstrated exceptional performance in visual object tracking for unmanned aerial vehicle (UAV) applications, but suffer from the undesirable boundary effect. To solve this issue, spatially regularized correlation filters (SRDCF) proposes the spatial regularization to penalize filter coefficients, thereby significantly improving the tracking performance. However, the temporal information hidden in the response maps is not considered in SRDCF, which limits the discriminative power and the robustness for accurate tracking. This work proposes a novel approach with dynamic consistency pursued correlation filters, i.e., the CPCF tracker. Specifically, through a correlation operation between adjacent response maps, a practical consistency map is generated to represent the consistency level across frames. By minimizing the difference between the practical and the scheduled ideal consistency map, the consistency level is constrained to maintain temporal smoothness, and rich temporal information contained in response maps is introduced. Besides, a dynamic constraint strategy is proposed to further improve the adaptability of the proposed tracker in complex situations. Comprehensive experiments are conducted on three challenging UAV benchmarks, i.e., UAV123@10FPS, UAVDT, and DTB70. Based on the experimental results, the proposed tracker favorably surpasses the other 25 state-of-the-art trackers with real-time running speed ($sim$43FPS) on a single CPU.
Most of the correlation filter based tracking algorithms can achieve good performance and maintain fast computational speed. However, in some complicated tracking scenes, there is a fatal defect that causes the object to be located inaccurately. In order to address this problem, we propose a particle filter redetection based tracking approach for accurate object localization. During the tracking process, the kernelized correlation filter (KCF) based tracker locates the object by relying on the maximum response value of the response map; when the response map becomes ambiguous, the KCF tracking result becomes unreliable. Our method can provide more candidates by particle resampling to detect the object accordingly. Additionally, we give a new object scale evaluation mechanism, which merely considers the differences between the maximum response values in consecutive frames. Extensive experiments on OTB2013 and OTB2015 datasets demonstrate that the proposed tracker performs favorably in relation to the state-of-the-art methods.
Discriminant Correlation Filters (DCF) based methods now become a kind of dominant approach to online object tracking. The features used in these methods, however, are either based on hand-crafted features like HoGs, or convolutional features trained independently from other tasks like image classification. In this work, we present an end-to-end lightweight network architecture, namely DCFNet, to learn the convolutional features and perform the correlation tracking process simultaneously. Specifically, we treat DCF as a special correlation filter layer added in a Siamese network, and carefully derive the backpropagation through it by defining the network output as the probability heatmap of object location. Since the derivation is still carried out in Fourier frequency domain, the efficiency property of DCF is preserved. This enables our tracker to run at more than 60 FPS during test time, while achieving a significant accuracy gain compared with KCF using HoGs. Extensive evaluations on OTB-2013, OTB-2015, and VOT2015 benchmarks demonstrate that the proposed DCFNet tracker is competitive with several state-of-the-art trackers, while being more compact and much faster.
In this paper, we propose a novel effective non-rigid object tracking framework based on the spatial-temporal consistent saliency detection. In contrast to most existing trackers that utilize a bounding box to specify the tracked target, the proposed framework can extract accurate regions of the target as tracking outputs. It achieves a better description of the non-rigid objects and reduces the background pollution for the tracking model. Furthermore, our model has several unique features. First, a tailored fully convolutional neural network (TFCN) is developed to model the local saliency prior for a given image region, which not only provides the pixel-wise outputs but also integrates the semantic information. Second, a novel multi-scale multi-region mechanism is proposed to generate local saliency maps that effectively consider visual perceptions with different spatial layouts and scale variations. Subsequently, local saliency maps are fused via a weighted entropy method, resulting in a final discriminative saliency map. Finally, we present a non-rigid object tracking algorithm based on the predicted saliency maps. By utilizing a spatial-temporal consistent saliency map (STCSM), we conduct target-background classification and use a simple fine-tuning scheme for online updating. Extensive experiments demonstrate that the proposed algorithm achieves competitive performance in both saliency detection and visual tracking, especially outperforming other related trackers on the non-rigid object tracking datasets.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا