No Arabic abstract
In this article, we study the activity patterns of modern social media users on platforms such as Twitter and Facebook. To characterize the complex patterns we observe in users interactions with social media, we describe a new class of point process models. The components in the model have straightforward interpretations and can thus provide meaningful insights into user activity patterns. A composite likelihood approach and a composite EM estimation procedure are developed to overcome the challenges that arise in parameter estimation. Using the proposed method, we analyze Donald Trumps Twitter data and study if and how his tweeting behavior evolved before, during and after the presidential campaign. Additionally, we analyze a large-scale social media data from Sina Weibo and identify interesting groups of users with distinct behaviors; in this analysis, we also discuss the effect of social ties on a users online content generating behavior.
Point process models have been used to analyze interaction event times on a social network, in the hope to provides valuable insights for social science research. However, the diagnostics and visualization of the modeling results from such an analysis have received limited discussion in the literature. In this paper, we develop a systematic set of diagnostic tools and visualizations for point process models fitted to data from a network setting. We analyze the residual process and Pearson residual on the network by inspecting their structure and clustering structure. Equipped with these tools, we can validate whether a model adequately captures the temporal and/or network structures in the observed data. The utility of our approach is demonstrated using simulation studies and point process models applied to a study of animal social interactions.
We address the problem of maximizing user engagement with content (in the form of like, reply, retweet, and retweet with comments)on the Twitter platform. We formulate the engagement forecasting task as a multi-label classification problem that captures choice behavior on an unsupervised clustering of tweet-topics. We propose a neural network architecture that incorporates user engagement history and predicts choice conditional on this context. We study the impact of recommend-ing tweets on engagement outcomes by solving an appropriately defined sweet optimization problem based on the proposed model using a large dataset obtained from Twitter.
Dail Eireann is the principal chamber of the Irish parliament. The 31st Dail Eireann is the principal chamber of the Irish parliament. The 31st Dail was in session from March 11th, 2011 to February 6th, 2016. Many of the members of the Dail were active on social media and many were Twitter users who followed other members of the Dail. The pattern of following amongst these politicians provides insights into political alignment within the Dail. We propose a new model, called the generalized latent space stochastic blockmodel, which extends and generalizes both the latent space model and the stochastic blockmodel to study social media connections between members of the Dail. The probability of an edge between two nodes in a network depends on their respective class labels as well as latent positions in an unobserved latent space. The proposed model is capable of representing transitivity, clustering, as well as disassortative mixing. A Bayesian method with Markov chain Monte Carlo sampling is proposed for estimation of model parameters. Model selection is performed using the WAIC criterion and models of different number of classes or dimensions of latent space are compared. We use the model to study Twitter following relationships of members of the Dail and interpret structure found in these relationships. We find that the following relationships amongst politicians is mainly driven by past and present political party membership. We also find that the modeling outputs are informative when studying voting within the Dail.
The contagion dynamics can emerge in social networks when repeated activation is allowed. An interesting example of this phenomenon is retweet cascades where users allow to re-share content posted by other people with public accounts. To model this type of behaviour we use a Hawkes self-exciting process. To do it properly though one needs to calibrate model under consideration. The main goal of this paper is to construct moments method of estimation of this model. The key step is based on identifying of a generator of a Hawkes process. We perform numerical analysis on real data as well.
This paper presents a user modeling pipeline to analyze discussions and opinions shared on social media regarding polarized political events (e.g., public polls). The pipeline follows a four-step methodology. First, social media posts and users metadata are crawled. Second, a filtering mechanism is applied to filter spammers and bot users. As a third step, demographics information is extracted out of the valid users, namely gender, age, ethnicity and location information. Finally, the political polarity of the users with respect to the analyzed event is predicted. In the scope of this work, our proposed pipeline is applied to two referendum scenarios (independence of Catalonia in Spain and autonomy of Lombardy in Italy) in order to assess the performance of the approach with respect to the capability of collecting correct insights on the demographics of social media users and of predicting the poll results based on the opinions shared by the users. Experiments show that the method was effective in predicting the political trends for the Catalonia case, but not for the Lombardy case. Among the various motivations for this, we noticed that in general Twitter was more representative of the users opposing the referendum than the ones in favor.