No Arabic abstract
We present a theoretical and computational framework to compute the symmetry number of a flexible sphere cluster in $mathbb{R}^3$, using a definition of symmetry that arises naturally when calculating the equilibrium probability of a cluster of spheres in the sticky-sphere limit. We define the sticky symmetry group of the cluster as the set of permutations and
We develop the theory of anomalous elasticity in two-dimensional flexible materials with orthorhombic crystal symmetry. Remarkably, in the universal region, where characteristic length scales are larger than the rather small Ginzburg scale ${sim} 10, {rm nm}$, these materials possess an infinite set of flat phases which are connected by emergent continuous symmetry. This hidden symmetry leads to the formation of a stable line of fixed points corresponding to different phases. The same symmetry also enforces power law scaling with momentum of the anisotropic bending rigidity and Youngs modulus, controlled by a single universal exponent -- the very same along the whole line of fixed points. These anisotropic flat phases are uniquely labeled by the ratio of absolute Poissons ratios. We apply our theory to monolayer black phosphorus (phosphorene).
We study a system of penetrable bosons embedded in a spherical surface. Under the assumption of weak interaction between the particles, the ground state of the system is, to a good approximation, a pure condensate. We employ thermodynamic arguments to investigate, within a variational ansatz for the single-particle state, the crossover between distinct finite-size phases in the parameter space spanned by the sphere radius and the chemical potential. In particular, for radii up to a few interaction ranges we examine the stability of the fluid phase with respect to a number of crystal-like arrangements having the symmetry of a regular or semi-regular polyhedron. We find that, while quantum fluctuations keep the system fluid at low density, upon compression it eventually becomes inhomogeneous, i.e., particles gather together in clusters. As the radius increases, the nature of the high-density aggregate varies and we observe a sequence of transitions between different cluster phases (solids), whose underlying rationale is to maximize the coordination number of clusters, while ensuring at the same time the proper distance between each neighboring pair. We argue that, at least within our mean-field description, every cluster phase is supersolid.
We study collections of self-propelled rods (SPR) moving in two dimensions for packing fractions less than or equal to 0.3. We find that in the thermodynamical limit the SPR undergo a phase transition between a disordered gas and a novel phase-separated system state. Interestingly, (global) orientational order patterns -- contrary to what has been suggested -- vanish in this limit. In the found novel state, the SPR self-organize into a highly dynamical, high-density, compact region - which we call aggregate - which is surrounded by a disordered gas. Active stresses build inside aggregates as result of the combined effect of local orientational order and active forces. This leads to the most distinctive feature of these aggregates: constant ejection of polar clusters of SPR. This novel phase-separated state represents a novel state of matter characterized by large fluctuations in volume and shape, related to mass ejection, and exhibits positional as well as orientational local order. SPR systems display new physics unseen in other active matter systems due to the coupling between density, active stresses, and orientational order (such coupling cannot be reduced simply to a coupling between speed and density).
We study the origin of buoyancy forces acting on a larger particle moving in a granular medium subject to horizontal shaking and its corrections before fluidization. In the fluid limit Archimedes law is verified; before the limit memory effects counteract buoyancy, as also found experimentally. The origin of the friction is an excluded volume effect between active particles, which we study more exactly for a random walker in a random environment. The same excluded volume effect is also responsible for the mutual attraction between bodies moving in the granular medium. Our theoretical modeling proceeds via an asymmetric exclusion process, i.e., via a dissipative lattice gas dynamics simulating the position degrees of freedom of a low density granular sea.
Physicists become acquainted with special functions early in their studies. Consider our perennial model, the harmonic oscillator, for which we need Hermite functions, or the Laguerre functions in quantum mechanics. Here we choose a particular number theoretical function, the Riemann zeta function and examine its influence in the realm of physics and also how physics may be suggestive for the resolution of one of mathematics most famous unconfirmed conjectures, the Riemann Hypothesis. Does physics hold an essential key to the solution for this more than hundred-year-old problem? In this work we examine numerous models from different branches of physics, from classical mechanics to statistical physics, where this function plays an integral role. We also see how this function is related to quantum chaos and how its pole-structure encodes when particles can undergo Bose-Einstein condensation at low temperature. Throughout these examinations we highlight how physics can perhaps shed light on the Riemann Hypothesis. Naturally, our aim could not be to be comprehensive, rather we focus on the major models and aim to give an informed starting point for the interested Reader.