Do you want to publish a course? Click here

The Zilch Vortical Effect

65   0   0.0 ( 0 )
 Added by Maxim Chernodub
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the question if a helicity transporting current is generated in a rotating photon gas at finite temperature. One problem is that there is no gauge invariant local notion of helicity or helicity current. We circumvent this by studying not only the optical helicity current but also the gauge-invariant zilch current. In order to avoid problems of causality, we quantize the system on a cylinder of a finite radius and then discuss the limit of infinite radius. We find that net helicity- and zilch currents are only generated in the case of the finite radius and are due to duality violating boundary conditions. A universal result exists for the current density on the axes of rotation in the high-temperature limit. To lowest order in the angular velocity, it takes a form similar to the well-known temperature dependence of the chiral vortical effect for chiral fermions. We briefly discuss possible relations to gravitational anomalies.



rate research

Read More

We consider photonic vortical effect, i.e. the difference of the flows of left- and right-handed photons along the vector of angular velocity in rotating photonic medium. Two alternative frameworks to evaluate the effect are considered, both of which have already been tried in the literature. First, the standard thermal fied theory and, alternatively, Hawking-radiation-type derivation. In our earlier attempt to compare the two approaches, we found a crucial factor of two difference. Here we revisit the problem, paying more attention to details of infrared regularizations. We find out that introduction of an infinitesimal mass of the vector field brings the two ways of evaluating the chiral vortical effect into agreement with each other. Some implications, both on the theoretical and phenomenological sides, are mentioned.
225 - Yanyan Bu , Shu Lin 2019
Based on a holographic model incorporating both chiral anomaly and gravitational anomaly, we study the effect of magneto-vortical coupling on transport properties of a strongly coupled plasma. The focus of present work is on the generation of a vector charge density and an axial current, as response to vorticity in a magnetized plasma. The transport coefficients parameterising the vector charge density and axial current are calculated both analytically (in the weak magnetic field limit) and also numerically (for general values of the magnetic field). We find the generation of vector charge receives both non-anomalous and anomalous contributions, with the non-anomalous contribution dominating in the limit of strong magnetic field and the anomalous contribution sensitive to both chiral anomaly and gravitational anomaly. On the contrary, we find the axial current is induced entirely due to the gravitational anomaly, thus we interpret the axial current generation as chiral vortical effect. The corresponding chiral vortical conductivity is found to be suppressed by the magnetic field. By Onsager relation, these transport coefficients are responsible for the generation of a thermal current due to a transverse electric field or a transverse axial magnetic field, which we call thermal Hall effect and thermal axial magnetic effect, respectively.
We study the chiral vortical effect far from equilibrium in a strongly coupled holographic field theory. Rotation is represented as a perturbation via a gravito-magnetic field on top of a five-dimensional charged AdS Vaidya metric. We also introduce a momentum relaxation mechanism by linear scalar field backgrounds and study the CVE dynamics as function of the charges, temperature and momentum relaxation. The far from equilibrium behavior shows that the CVE builds up with a significant delay in time compared to the quasi instantaneous equilibration of the background metric. We also pay special attention to the effects of the gravitational contribution to the axial anomaly in the CVE of the axial current. We develop an analytic estimate of this delay and also compute the quasi-normal modes near equilibrium which determine the late time ring down.
130 - Shu Lin , Lixin Yang 2021
We develop covariant chiral kinetic theory with Landau level basis. We use it to investigate a magnetized plasma with a transverse electric field and a steady vorticity as perturbations. After taking into account vacuum shift in the latter case, we find the resulting current and stress tensor in both cases can be matched consistently with constitutive equations of magnetohydrodynamics. We find the solution in the vorticity case contains both shifts in temperature and chemical potential as well as excitations of the lowest Landau level states. The solution gives rise to an vector charge density and axial current density. The vacuum parts coming from both shifts and excitations agree with previous studies and the medium parts coming entirely from excitations leads to a new contribution to vector charge and axial current density consistent with standard chiral vortical effect.
We consider the theory of Rarita-Schwinger field interacting with a field with spin 1/2, in the case of finite temperature, chemical potential and vorticity, and calculate the chiral vortical effect for spin 3/2. We have clearly demonstrated the role of interaction with the spin 1/2 field, the contribution of the terms with which to CVE is 6. Since the contribution from the Rarita-Schwinger field is -1, the overall coefficient in CVE is 6-1=5, which corresponds to the recent prediction of a gauge chiral anomaly for spin 3/2. The obtained values for the coefficients $mu^2$ and $T^2$ are proportional to each other, but not proportional to the spin, which indicates a possible new universality between the temperature-related and the chemical potential-related vortical effects. The results obtained allow us to speculate about the relationship between the gauge and gravitational chiral anomalies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا