Do you want to publish a course? Click here

A Modality-Adaptive Method for Segmenting Brain Tumors and Organs-at-Risk in Radiation Therapy Planning

59   0   0.0 ( 0 )
 Added by Mikael Agn
 Publication date 2018
and research's language is English
 Authors Mikael Agn




Ask ChatGPT about the research

In this paper we present a method for simultaneously segmenting brain tumors and an extensive set of organs-at-risk for radiation therapy planning of glioblastomas. The method combines a contrast-adaptive generative model for whole-brain segmentation with a new spatial regularization model of tumor shape using convolutional restricted Boltzmann machines. We demonstrate experimentally that the method is able to adapt to image acquisitions that differ substantially from any available training data, ensuring its applicability across treatment sites; that its tumor segmentation accuracy is comparable to that of the current state of the art; and that it captures most organs-at-risk sufficiently well for radiation therapy planning purposes. The proposed method may be a valuable step towards automating the delineation of brain tumors and organs-at-risk in glioblastoma patients undergoing radiation therapy.

rate research

Read More

Purpose: Radiotherapy presents unique challenges and clinical requirements for longitudinal tumor and organ-at-risk (OAR) prediction during treatment. The challenges include tumor inflammation/edema and radiation-induced changes in organ geometry, whereas the clinical requirements demand flexibility in input/output sequence timepoints to update the predictions on rolling basis and the grounding of all predictions in relationship to the pre-treatment imaging information for response and toxicity assessment in adaptive radiotherapy. Methods: To deal with the aforementioned challenges and to comply with the clinical requirements, we present a novel 3D sequence-to-sequence model based on Convolution Long Short Term Memory (ConvLSTM) that makes use of series of deformation vector fields (DVF) between individual timepoints and reference pre-treatment/planning CTs to predict future anatomical deformations and changes in gross tumor volume as well as critical OARs. High-quality DVF training data is created by employing hyper-parameter optimization on the subset of the training data with DICE coefficient and mutual information metric. We validated our model on two radiotherapy datasets: a publicly available head-and-neck dataset (28 patients with manually contoured pre-, mid-, and post-treatment CTs), and an internal non-small cell lung cancer dataset (63 patients with manually contoured planning CT and 6 weekly CBCTs). Results: The use of DVF representation and skip connections overcomes the blurring issue of ConvLSTM prediction with the traditional image representation. The mean and standard deviation of DICE for predictions of lung GTV at week 4, 5, and 6 were 0.83$pm$0.09, 0.82$pm$0.08, and 0.81$pm$0.10, respectively, and for post-treatment ipsilateral and contralateral parotids, were 0.81$pm$0.06 and 0.85$pm$0.02.
Purpose: Organ-at-risk (OAR) delineation is a key step for cone-beam CT (CBCT) based adaptive radiotherapy planning that can be a time-consuming, labor-intensive, and subject-to-variability process. We aim to develop a fully automated approach aided by synthetic MRI for rapid and accurate CBCT multi-organ contouring in head-and-neck (HN) cancer patients. MRI has superb soft-tissue contrasts, while CBCT offers bony-structure contrasts. Using the complementary information provided by MRI and CBCT is expected to enable accurate multi-organ segmentation in HN cancer patients. In our proposed method, MR images are firstly synthesized using a pre-trained cycle-consistent generative adversarial network given CBCT. The features of CBCT and synthetic MRI are then extracted using dual pyramid networks for final delineation of organs. CBCT images and their corresponding manual contours were used as pairs to train and test the proposed model. Quantitative metrics including Dice similarity coefficient (DSC) were used to evaluate the proposed method. The proposed method was evaluated on a cohort of 65 HN cancer patients. CBCT images were collected from those patients who received proton therapy. Overall, DSC values of 0.87, 0.79/0.79, 0.89/0.89, 0.90, 0.75/0.77, 0.86, 0.66, 0.78/0.77, 0.96, 0.89/0.89, 0.832, and 0.84 for commonly used OARs for treatment planning including brain stem, left/right cochlea, left/right eye, larynx, left/right lens, mandible, optic chiasm, left/right optic nerve, oral cavity, left/right parotid, pharynx, and spinal cord, respectively, were achieved. In this study, we developed a synthetic MRI-aided HN CBCT auto-segmentation method based on deep learning. It provides a rapid and accurate OAR auto-delineation approach, which can be used for adaptive radiation therapy.
136 - Charles Huang , Yong Yang , 2021
Noncoplanar radiation therapy treatment planning has the potential to improve dosimetric quality as compared to traditional coplanar techniques. Likewise, automated treatment planning algorithms can reduce a planners active treatment planning time and remove inter-planner variability. To address the limitations of traditional treatment planning, we have been developing a suite of algorithms called station parameter optimized radiation therapy (SPORT). Within the SPORT suite of algorithms, we propose a method called NC-POPS to produce noncoplanar (NC) plans using the fully automated Pareto Optimal Projection Search (POPS) algorithm. Our NC-POPS algorithm extends the original POPS algorithm to the noncoplanar setting with potential applications to both IMRT and VMAT. The proposed algorithm consists of two main parts: 1) noncoplanar beam angle optimization (BAO) and 2) fully automated inverse planning using the POPS algorithm. We evaluate the performance of NC-POPS by comparing between various noncoplanar and coplanar configurations. To evaluate plan quality, we compute the homogeneity index (HI), conformity index (CI), and dose-volume histogram (DVH) statistics for various organs-at-risk (OARs). As compared to the evaluated coplanar baseline methods, the proposed NC-POPS method achieves significantly better OAR sparing, comparable or better dose conformity, and similar dose homogeneity. Our proposed NC-POPS algorithm provides a modular approach for fully automated treatment planning of noncoplanar IMRT cases with the potential to substantially improve treatment planning workflow and plan quality.
Pancreas stereotactic body radiotherapy treatment planning requires planners to make sequential, time consuming interactions with the treatment planning system (TPS) to reach the optimal dose distribution. We seek to develop a reinforcement learning (RL)-based planning bot to systematically address complex tradeoffs and achieve high plan quality consistently and efficiently. The focus of pancreas SBRT planning is finding a balance between organs-at-risk sparing and planning target volume (PTV) coverage. Planners evaluate dose distributions and make planning adjustments to optimize PTV coverage while adhering to OAR dose constraints. We have formulated such interactions between the planner and the TPS into a finite-horizon RL model. First, planning status features are evaluated based on human planner experience and defined as planning states. Second, planning actions are defined to represent steps that planners would commonly implement to address different planning needs. Finally, we have derived a reward system based on an objective function guided by physician-assigned constraints. The planning bot trained itself with 48 plans augmented from 16 previously treated patients and generated plans for 24 cases in a separate validation set. All 24 bot-generated plans achieve similar PTV coverages compared to clinical plans while satisfying all clinical planning constraints. Moreover, the knowledge learned by the bot can be visualized and interpreted as consistent with human planning knowledge, and the knowledge maps learned in separate training sessions are consistent, indicating reproducibility of the learning process.
Automated segmentation can assist radiotherapy treatment planning by saving manual contouring efforts and reducing intra-observer and inter-observer variations. The recent development of deep learning approaches has revoluted medical data processing, including semantic segmentation, by dramatically improving performance. However, training effective deep learning models usually require a large amount of high-quality labeled data, which are often costly to collect. We developed a novel semi-supervised adversarial deep learning approach for 3D pelvic CT image semantic segmentation. Unlike supervised deep learning methods, the new approach can utilize both annotated and un-annotated data for training. It generates un-annotated synthetic data by a data augmentation scheme using generative adversarial networks (GANs). We applied the new approach to segmenting multiple organs in male pelvic CT images, where CT images without annotations and GAN-synthesized un-annotated images were used in semi-supervised learning. Experimental results, evaluated by three metrics (Dice similarity coefficient, average Hausdorff distance, and average surface Hausdorff distance), showed that the new method achieved either comparable performance with substantially fewer annotated images or better performance with the same amount of annotated data, outperforming the existing state-of-the-art methods.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا