Do you want to publish a course? Click here

Optical observations of hot novae returning to quiescence

231   0   0.0 ( 0 )
 Added by Marina Orio
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have monitored the return to quiescence of novae previously observed in outburst as supersoft X-ray sources, with optical photometry of the intermediate polar (IP) V4743 Sgr and candidate IP V2491 Cyg, and optical spectroscopy of these two and seven other systems. Our sample includes classical and recurrent novae, short period (few hours), intermediate period (1-2 days) and long period (symbiotic) binaries. The light curves of V4743 Sgr and V2491 Cyg present clear periodic modulations. For V4743 Sgr, the modulation occurs with the beat of the rotational and orbital periods. If the period measured for V2491 Cyg is also the beat of these two periods, the orbital one should be almost 17 hours. The recurrent nova T Pyx already shows fragmentation of the nebular shell less than 3 years after the outburst. While this nova still had strong [OIII] at this post-outburst epoch, these lines had already faded after 3 to 7 years in all the others. We did not find any difference in the ratio of equivalent widths of high ionization/excitation lines to that of the Hbeta line in novae with short and long orbital period, indicating that irradiation does not trigger high mass transfer rate from secondaries with small orbital separation. An important difference between the spectra of RS Oph and V3890 Sgr and those of many symbiotic persistent supersoft sources is the absence of forbidden coronal lines. With the X-rays turn-off, we interpret this as an indication that mass transfer in symbiotics recurrent novae is intermittent.



rate research

Read More

We present results of study, using observed and published spectra in optical region, of few novae (T CrB, GK Per, RS Oph, V3890 Sgr and V745 Sco) in their quiescence phase and a symbiotic star (BX Mon). Observations were made using the facilities available at 2m Himalayan Chandra Telescope (HCT). Generally, the spectra show prominent low ionization emission features of hydrogen, helium, iron and oxygen and TiO absorption features due to the cool secondary component; T CrB and GK Per show higher ionization lines. We used photoionization code CLOUDY to model these spectra. From the best-fit models, we have estimated the physical parameters, e.g., temperature, luminosity & hydrogen density; estimated elemental abundances and other parameters related to the system. By matching the spectra of various giants with the absorption features and from the best-fit, we determined the type of secondaries and also their contribution to the spectra.
115 - Julian P. Osborne 2015
Novae have been reported as transients for more than two thousand years. Their bright optical outbursts are the result of explosive nuclear burning of gas accreted from a binary companion onto a white dwarf. Novae containing a white dwarf close to the Chandrasekhar mass limit and accreting at a high rate are potentially the unknown progenitors of the type Ia supernovae used to measure the acceleration of the Universe. Swift X-ray observations have radically transformed our view of novae by providing dense monitoring throughout the outburst, revealing new phenomena in the super-soft X-rays from the still-burning white dwarf such as early extreme variability and half- to one-minute timescale quasi-periodic oscillations. The distinct evolution of this emission from the harder X-ray emission due to ejecta shocks has been clearly delineated. Soft X-ray observations allow the mass of the white dwarf, the mass burned and the mass ejected to be estimated. In combination with observations at other wavelengths, including the high spectral resolution observations of the large X-ray observatories, high resolution optical and radio imaging, radio monitoring, optical spectroscopy, and the detection of GeV gamma-ray emission from recent novae, models of the explosion have been tested and developed. I review nine novae for which Swift has made a significant impact; these have shown the signature of the components in the interacting binary system in addition to the white dwarf: the re-formed accretion disk, the companion star and its stellar wind.
100 - Jordi Jose 2019
High-resolution spectroscopy has revealed large concentrations of CNO and sometimes other intermediate-mass elements in the shells ejected during nova outbursts, suggesting that the solar composition material transferred from the secondary mixes with the outermost layers of the underlying white dwarf during the thermonuclear runaway. Multidimensional simulations have shown that Kelvin-Helmholtz instabilities provide self-enrichment of the accreted envelope with material from the outermost layers of the white dwarf, at levels that agree with observations. However, the Eulerian and time-explicit nature of most multidimensional codes used to date and the overwhelming computational load have limited their applicability, and no multidimensional simulation has been conducted for a full nova cycle. This paper explores a new methodology that combines 1-D and 3-D simulations. The early stages of the explosion (i.e., mass-accretion and initiation of the runaway) have been computed with the 1-D hydrodynamic code SHIVA. When convection extends throughout the entire envelope, the structures for each model were mapped into 3-D Cartesian grids and were subsequently followed with the multidimensional code FLASH. Two key physical quantities were extracted from the 3-D simulations and subsequently implemented into SHIVA, which was used to complete the simulation through the late expansion and ejection stages: the time-dependent amount of mass dredged-up from the outer white dwarf layers, and the time-dependent convective velocity profile throughout the envelope. More massive envelopes than those reported from previous models with pre-enrichment have been found. This results in more violent outbursts, characterized by higher peak temperatures and greater ejected masses, with metallicity enhancements in agreement with observations.
[Abridged.] We present multiwavelength observations of the black hole binary system, A0620-00. Using the Cosmic Origins Spectrograph on the Hubble Space Telescope, we have obtained the first FUV spectrum of A0620-00. The observed spectrum is flat in the FUV and very faint (with continuum fluxes simeq 1e - 17 ergs/cm^2/s/A). We compiled the dereddened, broadband spectral energy distribution of A0620-00 and compared it to previous SEDs as well as theoretical models. The SEDs show that the source varies at all wavelengths for which we have multiple samples. Contrary to previous observations, the optical-UV spectrum does not continue to drop to shorter wavelengths, but instead shows a recovery and an increasingly blue spectrum in the FUV. We created an optical-UV spectrum of A0620-00 with the donor star contribution removed. The non-stellar spectrum peaks at simeq3000 {deg}A. The peak can be fit with a T=10,000 K blackbody with a small emitting area, probably originating in the hot spot where the accretion stream impacts the outer disk. However, one or more components in addition to the blackbody are needed to fit the FUV upturn and the red optical fluxes in the optical-UV spectrum. By comparing the mass accretion rate determined from the hot spot luminosity to the mean accretion rate inferred from the outburst history, we find that the latter is an order of magnitude smaller than the former, indicating that sim90% of the accreted mass must be lost from the system if the predictions of the disk instability model and the estimated interoutburst interval are correct. The mass accretion rate at the hot spot is 10^5 the accretion rate at the black hole inferred from the X-ray luminosity. To reconcile these requires that outflows carry away virtually all of the accreted mass, a very low rate of mass transfer from the outer cold disk into the inner hot region, and/or radiatively inefficient accretion.
We report on recent optical observations of the stellar and the nebular remnants of 22 southern post-novae. In this study, for each of our targets, we obtained and analysed long-slit spectra in the spectral range 3500-6600 A and in H$alpha$+NII narrow-band images. The changes in the emission lines equivalent widths with the time since the outburst agree with earlier published results of other authors. We estimated an average value $alpha$=2.37 for the exponent of the power law fitted to the post-novae continua. Our observations clearly show the two-component structure of the V842 Cen expanding nebulae, owing to the different velocities of the ejected matter. We discovered an expanding shell around V382 Vel with an outer diameter of about 12 arcsec.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا