Properties of Superiorized Preconditioned Conjugate Gradient (SupPCG) algorithms in image reconstruction from projections are examined. Least squares (LS) is usually chosen for measuring data-inconsistency in these inverse problems. Preconditioned Conjugate Gradient algorithms are fast methods for finding an LS solution. However, for ill-posed problems, such as image reconstruction, an LS solution may not provide good image quality. This can be taken care of by superiorization. A superiorized algorithm leads to images with the value of a secondary criterion (a merit function such as the total variation) improved as compared to images with similar data-inconsistency obtained by the algorithm without superiorization. Numerical experimentation shows that SupPCG can lead to high-quality reconstructions within a remarkably short time. A theoretical analysis is also provided.