No Arabic abstract
We consider analytic, vacuum spacetimes that admit compact, non-degenerate Cauchy horizons. Many years ago we proved that, if the null geodesic generators of such a horizon were all textit{closed} curves, then the enveloping spacetime would necessarily admit a non-trivial, horizon-generating Killing vector field. Using a slightly extended version of the Cauchy-Kowaleski theorem one could establish the existence of infinite dimensional, analytic families of such `generalized Taub-NUT spacetimes and show that, generically, they admitted textit{only} the single (horizon-generating) Killing field alluded to above. In this article we relax the closure assumption and analyze vacuum spacetimes in which the generic horizon generating null geodesic densely fills a 2-torus lying in the horizon. In particular we show that, aside from some highly exceptional cases that we refer to as `ergodic, the non-closed generators always have this (densely 2-torus-filling) geometrical property in the analytic setting. By extending arguments we gave previously for the characterization of the Killing symmetries of higher dimensional, stationary black holes we prove that analytic, 4-dimensional, vacuum spacetimes with such (non-ergodic) compact Cauchy horizons always admit (at least) two independent, commuting Killing vector fields of which a special linear combination is horizon generating. We also discuss the textit{conjectures} that every such spacetime with an textit{ergodic} horizon is trivially constructable from the flat Kasner solution by making certain `irrational toroidal compactifications and that degenerate compact Cauchy horizons do not exist in the analytic case.
Gibbons and Hawking [Phys. Rev. D 15, 2738 (1977)] have shown that the horizon of de Sitter space emits radiation in the same way as the event horizon of the black hole. But actual cosmological horizons are not event horizons, except in de Sitter space. Nevertheless, this paper proves Gibbons and Hawkings radiation formula as an exact result for any flat space expanding with strictly positive Hubble parameter. The paper gives visual and intuitive insight into why this is the case. The paper also indicates how cosmological horizons are related to the dynamical Casimir effect, which makes experimental tests with laboratory analogues possible.
We discuss the cosmological constant problem, at the minisuperspace level, within the framework of the so-called normalized general relativity (NGR). We prove that the Universe cannot be closed, and reassure that the accompanying cosmological constant $Lambda$ generically vanishes, at least classically. The theory does allow, however, for a special class of $Lambda ot=0$ solutions which are associated with static closed Einstein universe and with Eddington-Lema^{i}tre universe.
The cosmological constant if considered as a fundamental constant, provides an information treatment for gravitation problems, both cosmological and of black holes. The efficiency of that approach is shown via gedanken experiments for the information behavior of the horizons for Schwarzschild-de Sitter and Kerr-de Sitter metrics. A notion of entropy regarding any observer and in all possible non-extreme black hole solutions is suggested, linked also to Bekenstein bound. The suggested information approach forbids the existence of naked singularities.
We find exact formulas for the Extended Uncertainty Principle (EUP) for the Rindler and Friedmann horizons and show that they can be expanded to obtain asymptotic forms known from the previous literature. We calculate the corrections to Hawking temperature and Bekenstein entropy of a black hole in the universe due to Rindler and Friedmann horizons. The effect of the EUP is similar to the canonical corrections of thermal fluctuations and so it rises the entropy signalling further loss of information.
We complement our work on the causality of upper semi-continuous distributions of cones with some results on Cauchy hypersurfaces. We prove that every locally stably acausal Cauchy hypersurface is stable. Then we prove that the signed distance $d_S$ from a spacelike hypersurface $S$ is, in a neighborhood of it, as regular as the hypersurface, and by using this fact we give a proof that every Cauchy hypersurface is the level set of a Cauchy temporal (and steep) function of the same regularity as the hypersurface. We also show that in a globally hyperbolic closed cone structure compact spacelike hypersurfaces with boundary can be extended to Cauchy spacelike hypersurfaces of the same regularity. We end the work with a separation result and a density result.