Renormalon-free definition of the gluon condensate within the large-$beta_0$ approximation


Abstract in English

We propose a clear definition of the gluon condensate within the large-$beta_0$ approximation as an attempt toward a systematic argument on the gluon condensate. We define the gluon condensate such that it is free from a renormalon uncertainty, consistent with the renormalization scale independence of each term of the operator product expansion (OPE), and an identical object irrespective of observables. The renormalon uncertainty of $mathcal{O}(Lambda^4)$, which renders the gluon condensate ambiguous, is separated from a perturbative calculation by using a recently suggested analytic formulation. The renormalon uncertainty is absorbed into the gluon condensate in the OPE, which makes the gluon condensate free from the renormalon uncertainty. As a result, we can define the OPE in a renormalon-free way. Based on this renormalon-free OPE formula, we discuss numerical extraction of the gluon condensate using the lattice data of the energy density operator defined by the Yang--Mills gradient flow.

Download